Maria Khodaverdian , Yeva Gabrielyan , Aleksandr Hakobyan , Salaman Ijaz , Paolo Castaldi
{"title":"A novel predictor based optimal integral sliding-mode-based attitude tracking control of spacecraft under actuator’s uncertainties and constraints","authors":"Maria Khodaverdian , Yeva Gabrielyan , Aleksandr Hakobyan , Salaman Ijaz , Paolo Castaldi","doi":"10.1016/j.conengprac.2025.106269","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces a novel predictor-based integral sliding mode control scheme, designed for spacecraft attitude control. By leveraging Taylor series expansion, we develop predictor dynamics for the sliding surface and its integral, along with the corresponding reaching laws. Subsequently, we formulate a constrained quadratic optimization problem to derive the optimal control input. A notable aspect of the proposed method is the integration of the sliding surface’s integral into the control design, which significantly enhances robustness. Additionally, the proposed approach ensures optimality, fault tolerance capability, fixed-time convergence, computational efficiency, and effective constraint management. In this work, we perform a closed-loop stability analysis to confirm system stability in the presence of external perturbations, and constraints. Comparison results with existing method demonstrate that the proposed approach enhances performance while maintaining satisfactory precision. To validate the practical applicability of our algorithm, we conduct hardware-in-the-loop simulations, demonstrating the proposed method’s seamless integration with real-world hardware.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"158 ","pages":"Article 106269"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125000322","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a novel predictor-based integral sliding mode control scheme, designed for spacecraft attitude control. By leveraging Taylor series expansion, we develop predictor dynamics for the sliding surface and its integral, along with the corresponding reaching laws. Subsequently, we formulate a constrained quadratic optimization problem to derive the optimal control input. A notable aspect of the proposed method is the integration of the sliding surface’s integral into the control design, which significantly enhances robustness. Additionally, the proposed approach ensures optimality, fault tolerance capability, fixed-time convergence, computational efficiency, and effective constraint management. In this work, we perform a closed-loop stability analysis to confirm system stability in the presence of external perturbations, and constraints. Comparison results with existing method demonstrate that the proposed approach enhances performance while maintaining satisfactory precision. To validate the practical applicability of our algorithm, we conduct hardware-in-the-loop simulations, demonstrating the proposed method’s seamless integration with real-world hardware.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.