Smooth 3D transition cell generation based on latent space arithmetic

IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Additive manufacturing Pub Date : 2025-02-18 DOI:10.1016/j.addma.2025.104714
Xiaochen Yu , Bohan Peng , Ajit Panesar
{"title":"Smooth 3D transition cell generation based on latent space arithmetic","authors":"Xiaochen Yu ,&nbsp;Bohan Peng ,&nbsp;Ajit Panesar","doi":"10.1016/j.addma.2025.104714","DOIUrl":null,"url":null,"abstract":"<div><div>Lattice structures with multiple unit cell types diversify the property space by offering more design freedom, encouraging adaptation of metamaterials in engineering applications. It is essential to ensure structural connectivity and smooth transition among different cell types to avoid pre-mature failure. In this work, we propose a framework based on latent space operations to generate smoothly morphing and fully connected transition cells, addressing the current research gap in realising lattice designs of dissimilar unit cells. Latent embedding – a low-dimensional representation of the original microstructure – is obtained through a variational autoencoder. Different types of triply periodic minimal surface (TPMS) lattice were chosen as the targets to demonstrate the capability of the algorithm in handling complex 3D geometries within a physically restricted transition region. Both qualitative and quantitative evaluations are provided to illustrate the connectivity and geometric similarity of the generated transition. Benchmark comparisons against both analytical and existing machine learning (ML) based solutions indicate the superior efficacy and generality of the proposed framework.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"101 ","pages":"Article 104714"},"PeriodicalIF":10.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425000788","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice structures with multiple unit cell types diversify the property space by offering more design freedom, encouraging adaptation of metamaterials in engineering applications. It is essential to ensure structural connectivity and smooth transition among different cell types to avoid pre-mature failure. In this work, we propose a framework based on latent space operations to generate smoothly morphing and fully connected transition cells, addressing the current research gap in realising lattice designs of dissimilar unit cells. Latent embedding – a low-dimensional representation of the original microstructure – is obtained through a variational autoencoder. Different types of triply periodic minimal surface (TPMS) lattice were chosen as the targets to demonstrate the capability of the algorithm in handling complex 3D geometries within a physically restricted transition region. Both qualitative and quantitative evaluations are provided to illustrate the connectivity and geometric similarity of the generated transition. Benchmark comparisons against both analytical and existing machine learning (ML) based solutions indicate the superior efficacy and generality of the proposed framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
期刊最新文献
Toxicity of stereolithography 3D printed objects at the chemical level and strategies to improve biocompatibility Regulated the orientation of graphene nanoplatelets via flow field in material extrusion for enhancing thermal conductivity z-GrAdd – Facile fabrication of various functional gradient materials by 3D printing using the gradual addition of reagents Smooth 3D transition cell generation based on latent space arithmetic Laser additive manufacturing of lunar regolith simulant: New insights from in situ synchrotron X-ray imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1