Insights from the Job Demands–Resources Model: AI's dual impact on employees’ work and life well-being

IF 20.1 1区 管理学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE International Journal of Information Management Pub Date : 2025-02-22 DOI:10.1016/j.ijinfomgt.2025.102887
Ya-Ting Chuang , Hua-Ling Chiang , An-Pan Lin
{"title":"Insights from the Job Demands–Resources Model: AI's dual impact on employees’ work and life well-being","authors":"Ya-Ting Chuang ,&nbsp;Hua-Ling Chiang ,&nbsp;An-Pan Lin","doi":"10.1016/j.ijinfomgt.2025.102887","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) has rapidly integrated into organizational workflows, sparking two debates: proponents argue that it increases productivity and decreases workloads, whereas opponents warn that it induces technostress (e.g., job replacement) and decreases employees' well-being. However, AI adoption by employees remains understudied, requiring both theoretical and empirical investigation to assess its positive and negative effects. This study employs the job demands–resources (JD–R) model as a guiding framework to examine the impact of AI demands (i.e., technostress) and resources (i.e., efficacy and generative AI) on employees' work and life domains (i.e., productivity, job satisfaction, and work–family conflict), with engagement and exhaustion as mediating factors. Data gathering through a three-wave survey involved 600 gender-balanced participants working with AI across diverse industries. Bayesian SEM results indicate that both AI efficacy and generative AI positively impact productivity, with AI efficacy also enhancing engagement and job satisfaction. In contrast, AI technostress increases exhaustion, exacerbates work–family conflict, and lowers job satisfaction, even though it may still contribute to productivity. These findings highlight the dual impact of AI on employees: AI technostress impairs well-being, while AI efficacy enhances it. Notably, generative AI mitigates the negative effects of technostress, a benefit not observed for AI efficacy as measured in this study. Overall, this study provides an empirical basis for understanding the resources and demands associated with AI adoption and its impact on employees' psychological processes, influencing both their work and life domains and leading to diverse outcomes.</div></div>","PeriodicalId":48422,"journal":{"name":"International Journal of Information Management","volume":"83 ","pages":"Article 102887"},"PeriodicalIF":20.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268401225000192","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) has rapidly integrated into organizational workflows, sparking two debates: proponents argue that it increases productivity and decreases workloads, whereas opponents warn that it induces technostress (e.g., job replacement) and decreases employees' well-being. However, AI adoption by employees remains understudied, requiring both theoretical and empirical investigation to assess its positive and negative effects. This study employs the job demands–resources (JD–R) model as a guiding framework to examine the impact of AI demands (i.e., technostress) and resources (i.e., efficacy and generative AI) on employees' work and life domains (i.e., productivity, job satisfaction, and work–family conflict), with engagement and exhaustion as mediating factors. Data gathering through a three-wave survey involved 600 gender-balanced participants working with AI across diverse industries. Bayesian SEM results indicate that both AI efficacy and generative AI positively impact productivity, with AI efficacy also enhancing engagement and job satisfaction. In contrast, AI technostress increases exhaustion, exacerbates work–family conflict, and lowers job satisfaction, even though it may still contribute to productivity. These findings highlight the dual impact of AI on employees: AI technostress impairs well-being, while AI efficacy enhances it. Notably, generative AI mitigates the negative effects of technostress, a benefit not observed for AI efficacy as measured in this study. Overall, this study provides an empirical basis for understanding the resources and demands associated with AI adoption and its impact on employees' psychological processes, influencing both their work and life domains and leading to diverse outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Information Management
International Journal of Information Management INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
53.10
自引率
6.20%
发文量
111
审稿时长
24 days
期刊介绍: The International Journal of Information Management (IJIM) is a distinguished, international, and peer-reviewed journal dedicated to providing its readers with top-notch analysis and discussions within the evolving field of information management. Key features of the journal include: Comprehensive Coverage: IJIM keeps readers informed with major papers, reports, and reviews. Topical Relevance: The journal remains current and relevant through Viewpoint articles and regular features like Research Notes, Case Studies, and a Reviews section, ensuring readers are updated on contemporary issues. Focus on Quality: IJIM prioritizes high-quality papers that address contemporary issues in information management.
期刊最新文献
Editorial Board Insights from the Job Demands–Resources Model: AI's dual impact on employees’ work and life well-being From assistance to reliance: Development and validation of the large language model dependence scale Resistance to shared consumption: Exploring the interplay of access-temporality, economic-value, and anticipated regret in case of carsharing How was my performance? Exploring the role of anchoring bias in AI-assisted decision making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1