miR-214-3p attenuates ferroptosis-induced cellular damage in a mouse model of diabetic retinopathy through the p53/SLC7A11/GPX4 axis

IF 3 2区 医学 Q1 OPHTHALMOLOGY Experimental eye research Pub Date : 2025-02-18 DOI:10.1016/j.exer.2025.110299
Fang Yuan , Songyu Han , Yahong Li , Sanming Li , Dian Li , Qingjun Tian , Ronghua Feng , Ying Shao , Xing Liang , Jingbo Wang , Hetian Lei , Xiaorong Li , Yajian Duan
{"title":"miR-214-3p attenuates ferroptosis-induced cellular damage in a mouse model of diabetic retinopathy through the p53/SLC7A11/GPX4 axis","authors":"Fang Yuan ,&nbsp;Songyu Han ,&nbsp;Yahong Li ,&nbsp;Sanming Li ,&nbsp;Dian Li ,&nbsp;Qingjun Tian ,&nbsp;Ronghua Feng ,&nbsp;Ying Shao ,&nbsp;Xing Liang ,&nbsp;Jingbo Wang ,&nbsp;Hetian Lei ,&nbsp;Xiaorong Li ,&nbsp;Yajian Duan","doi":"10.1016/j.exer.2025.110299","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroptosis has been implicated in the development of diabetic retinopathy (DR). This study aimed to identify novel ferroptosis-related regulators involved in the pathophysiology of DR using an in vivo streptozotocin (STZ)-induced diabetic model in C57BL/6J mice and cultured primary human retinal vascular endothelial cells (HRECs). Transmission electron microscopy revealed mitochondrial morphological changes consistent with ferroptosis in vascular endothelial cells from STZ-treated mice. Western blot analysis showed increased levels of ferroptosis markers (4-HNE, p53, phosphorylated p53) along with decreased levels of glutathione (GSH), SLC7A11, and GPX4 in diabetic mice. <em>In vitro</em> experiments demonstrated that ferroptosis inhibitors, including pifithrin-α (a p53 inhibitor) and ferrostatin-1 (Fer-1), mitigated cellular damage and Fe<sup>2+</sup> accumulation in high-glucose-treated HRECs. These inhibitors also improved mitochondrial membrane potential and restored GSH levels. Bioinformatics analysis and dual-luciferase assays identified a p53 binding site within the miR-214-3p sequence. Overexpression of miR-214-3p in high-glucose-treated HRECs resulted in downregulation of p53 and upregulation of SLC7A11 and GPX4, thereby alleviating ferroptosis-induced injury. This study demonstrates that ferroptosis contributes to retinal damage at tissue, cellular, and molecular levels in DR. Specifically, p53, regulated by miR-214-3p, promotes ferroptosis through the SLC7A11/GPX4 pathway under high-glucose conditions. These findings suggest that the miR-214-3p/p53/SLC7A11/GPX4 axis could serve as a potential therapeutic target for managing ferroptosis and retinal damage in diabetic retinopathy.</div></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"253 ","pages":"Article 110299"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483525000703","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis has been implicated in the development of diabetic retinopathy (DR). This study aimed to identify novel ferroptosis-related regulators involved in the pathophysiology of DR using an in vivo streptozotocin (STZ)-induced diabetic model in C57BL/6J mice and cultured primary human retinal vascular endothelial cells (HRECs). Transmission electron microscopy revealed mitochondrial morphological changes consistent with ferroptosis in vascular endothelial cells from STZ-treated mice. Western blot analysis showed increased levels of ferroptosis markers (4-HNE, p53, phosphorylated p53) along with decreased levels of glutathione (GSH), SLC7A11, and GPX4 in diabetic mice. In vitro experiments demonstrated that ferroptosis inhibitors, including pifithrin-α (a p53 inhibitor) and ferrostatin-1 (Fer-1), mitigated cellular damage and Fe2+ accumulation in high-glucose-treated HRECs. These inhibitors also improved mitochondrial membrane potential and restored GSH levels. Bioinformatics analysis and dual-luciferase assays identified a p53 binding site within the miR-214-3p sequence. Overexpression of miR-214-3p in high-glucose-treated HRECs resulted in downregulation of p53 and upregulation of SLC7A11 and GPX4, thereby alleviating ferroptosis-induced injury. This study demonstrates that ferroptosis contributes to retinal damage at tissue, cellular, and molecular levels in DR. Specifically, p53, regulated by miR-214-3p, promotes ferroptosis through the SLC7A11/GPX4 pathway under high-glucose conditions. These findings suggest that the miR-214-3p/p53/SLC7A11/GPX4 axis could serve as a potential therapeutic target for managing ferroptosis and retinal damage in diabetic retinopathy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental eye research
Experimental eye research 医学-眼科学
CiteScore
6.80
自引率
5.90%
发文量
323
审稿时长
66 days
期刊介绍: The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.
期刊最新文献
Features That Distinguish Age-Related Macular Degeneration from Aging. MiR-224-3p regulates ferroptosis and inflammation in lens epithelial cells by targeting ACSL4. Slope Chain Code-based scale-independent tortuosity measurement on retinal vessels. Retinal degeneration increases inter-trial variabilities of light-evoked spiking activities in ganglion cells Dissecting the biological complexity of age-related macular degeneration: Is it one disease, multiple separate diseases, or a spectrum?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1