A quick and non-destructive approach to combat timber adulteration using attenuated total reflectance Fourier transform infrared spectroscopy and chemometrics

IF 2.1 3区 生物学 Q2 MULTIDISCIPLINARY SCIENCES The Science of Nature Pub Date : 2025-02-21 DOI:10.1007/s00114-025-01970-8
Arti Yadav, Chongtham Nimi, Manish Kapoor, Rajinder Singh
{"title":"A quick and non-destructive approach to combat timber adulteration using attenuated total reflectance Fourier transform infrared spectroscopy and chemometrics","authors":"Arti Yadav,&nbsp;Chongtham Nimi,&nbsp;Manish Kapoor,&nbsp;Rajinder Singh","doi":"10.1007/s00114-025-01970-8","DOIUrl":null,"url":null,"abstract":"<div><p>Timber adulteration, illegal harvesting, and logging of legally protected timber species are a major threat to biodiversity. Identifying and differentiating low-value timber species from high-grade ones is a prerequisite to combat timber-related crimes. Timber adulteration can be detected by techniques such as DNA barcoding. However, these techniques have some drawbacks as they are time-consuming and destructive. To address all these issues, in this study, a quick and non-destructive approach has been used to detect timber adulteration by identifying and discriminating selective timber species using vibrational spectroscopy along chemometric methods such as principal component analysis (PCA), linear discriminant analysis (LDA), and partial least square discriminant analysis (PLS-DA) that successfully differentiated <i>Tectona grandis</i> (teak) from <i>Magnolia champaca</i> (champ) with 96.25% accuracy, <i>Swietenia macrophylla</i> (mahogany) from <i>Magnolia champaca</i> with 97.5% accuracy, and <i>Artocarpus heterophyllus</i> (Jack) from <i>Mangifera indica</i> (mango) with 100% PCA LDA training accuracies. Partial least square discriminant analysis successfully differentiated the timber species with 100% accuracy. ATR-FTIR spectroscopy and chemometric tools proved to be effective in detecting timber adulteration, which will help the investigating agencies combat timber-related crimes.</p></div>","PeriodicalId":794,"journal":{"name":"The Science of Nature","volume":"112 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Science of Nature","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s00114-025-01970-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Timber adulteration, illegal harvesting, and logging of legally protected timber species are a major threat to biodiversity. Identifying and differentiating low-value timber species from high-grade ones is a prerequisite to combat timber-related crimes. Timber adulteration can be detected by techniques such as DNA barcoding. However, these techniques have some drawbacks as they are time-consuming and destructive. To address all these issues, in this study, a quick and non-destructive approach has been used to detect timber adulteration by identifying and discriminating selective timber species using vibrational spectroscopy along chemometric methods such as principal component analysis (PCA), linear discriminant analysis (LDA), and partial least square discriminant analysis (PLS-DA) that successfully differentiated Tectona grandis (teak) from Magnolia champaca (champ) with 96.25% accuracy, Swietenia macrophylla (mahogany) from Magnolia champaca with 97.5% accuracy, and Artocarpus heterophyllus (Jack) from Mangifera indica (mango) with 100% PCA LDA training accuracies. Partial least square discriminant analysis successfully differentiated the timber species with 100% accuracy. ATR-FTIR spectroscopy and chemometric tools proved to be effective in detecting timber adulteration, which will help the investigating agencies combat timber-related crimes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Science of Nature
The Science of Nature 综合性期刊-综合性期刊
CiteScore
3.40
自引率
0.00%
发文量
47
审稿时长
4-8 weeks
期刊介绍: The Science of Nature - Naturwissenschaften - is Springer''s flagship multidisciplinary science journal. The journal is dedicated to the fast publication and global dissemination of high-quality research and invites papers, which are of interest to the broader community in the biological sciences. Contributions from the chemical, geological, and physical sciences are welcome if contributing to questions of general biological significance. Particularly welcomed are contributions that bridge between traditionally isolated areas and attempt to increase the conceptual understanding of systems and processes that demand an interdisciplinary approach.
期刊最新文献
The left–right-handedness of the cylindrical spathe correlates with the phyllotactic spiral direction in Arisaema (Araceae) Breeding behaviour, visual communication and male combat of Philothamnus occidentalis and Philothamnus natalensis A quick and non-destructive approach to combat timber adulteration using attenuated total reflectance Fourier transform infrared spectroscopy and chemometrics The effectiveness of pollinators and their foraging behavior on Neustanthus phaseoloides (Fabaceae) Correction: The long proboscis of the aphid Stomaphis yanonis (Aphididae Lachninae) is advantageous for avoiding predation by tending ants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1