Spin magnetization in unconventional antiferromagnets with collinear and non-collinear spins

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Science China Physics, Mechanics & Astronomy Pub Date : 2025-02-20 DOI:10.1007/s11433-024-2567-6
Lun-Hui Hu, Song-Bo Zhang
{"title":"Spin magnetization in unconventional antiferromagnets with collinear and non-collinear spins","authors":"Lun-Hui Hu,&nbsp;Song-Bo Zhang","doi":"10.1007/s11433-024-2567-6","DOIUrl":null,"url":null,"abstract":"<div><p>Unconventional antiferromagnets (AFMs) with non-relativistic spin-splitting, such as the recently discovered altermagnet, have recently gained significant interest due to their potential for novel quantum phenomena and spintronic applications. The compensated magnetization in unconventional AFMs is protected by spin-space symmetries. In this work, we explore the symmetry-breaking effects and identify three distinct mechanisms for inducing net spin magnetizations in unconventional AFMs with collinear or non-collinear spins: (1) finite size effect, (2) extrinsic spin canting effect, and (3) irradiation with circularly polarized light. We show that the induced spin magnetizations are controllable and manifest as diverse intriguing phenomena. For the finite size system, the confined direction of a two-dimensional AM creates quantum-well-like subbands that determine the spin magnetization. This effect can be experimentally probed by measuring the spin density of states and the spin-polarization of Andreev-bound states within planar Josephson junctions. In the case of spin canting effect, it leads to peculiar anisotropic and non-monotonic behaviors in the superconducting proximity effect. Lastly, with circularly polarized light, spin magnetization is driven by the polarized light and the chirality of non-collinear magnetic order, thus offering a direct means of detecting the chirality of magnetic order in real materials. Our findings provide valuable insight into understanding and probing the spin magnetization in unconventional AFM materials.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 4","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2567-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Unconventional antiferromagnets (AFMs) with non-relativistic spin-splitting, such as the recently discovered altermagnet, have recently gained significant interest due to their potential for novel quantum phenomena and spintronic applications. The compensated magnetization in unconventional AFMs is protected by spin-space symmetries. In this work, we explore the symmetry-breaking effects and identify three distinct mechanisms for inducing net spin magnetizations in unconventional AFMs with collinear or non-collinear spins: (1) finite size effect, (2) extrinsic spin canting effect, and (3) irradiation with circularly polarized light. We show that the induced spin magnetizations are controllable and manifest as diverse intriguing phenomena. For the finite size system, the confined direction of a two-dimensional AM creates quantum-well-like subbands that determine the spin magnetization. This effect can be experimentally probed by measuring the spin density of states and the spin-polarization of Andreev-bound states within planar Josephson junctions. In the case of spin canting effect, it leads to peculiar anisotropic and non-monotonic behaviors in the superconducting proximity effect. Lastly, with circularly polarized light, spin magnetization is driven by the polarized light and the chirality of non-collinear magnetic order, thus offering a direct means of detecting the chirality of magnetic order in real materials. Our findings provide valuable insight into understanding and probing the spin magnetization in unconventional AFM materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
期刊最新文献
Aligning nano-scale crystals in bulk materials Spin magnetization in unconventional antiferromagnets with collinear and non-collinear spins Attenuation of Richtmyer-Meshkov instability growth of fluid layer via double shock A fully mesh-independent non-linear topology optimization framework based on neural representations: Quasi-static problem Polarization structure transition of C-point singularities upon reflection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1