Bakr Ahmed Taha, Ahmed C Kadhim, Ali J Addie, Qussay Al-Jubouri, Ahmad S Azzahrani, Adawiya J Haider, Ali Najem Alkawaz, Norhana Arsad
{"title":"Optical Spectroscopy of Cerebral Blood Flow for Tissue Interrogation in Ischemic Stroke Diagnosis.","authors":"Bakr Ahmed Taha, Ahmed C Kadhim, Ali J Addie, Qussay Al-Jubouri, Ahmad S Azzahrani, Adawiya J Haider, Ali Najem Alkawaz, Norhana Arsad","doi":"10.1021/acschemneuro.4c00809","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke remains a leading cause of morbidity and mortality worldwide, and early diagnosis is critical for improving clinical outcomes. This paper presents an optical design framework combining speckle contrast optical spectroscopy (SCOS) with multiwavelength reflectance spectroscopy to monitor subtle changes in cerebral blood flow during ischemic events. The research aims to enable precise tissue interrogation using high-resolution, low-scatter imaging. Key to the system's accuracy is a 1.55 μm small beam waist, a grating density of 1300 grooves/mm, and a 15.53 μm depth of focus. The calculated effective focal length of 8333.33 μm enhances the resolution to 4.07 μm, improving the detection of minor changes in tissue optical properties. We investigate the sensitivity of various near-infrared wavelengths (660, 785, 800, and 976 nm) to ischemic-induced changes, with particular emphasis on the 976 nm wavelength, which demonstrates superior tissue penetration and increased sensitivity to variations in blood perfusion and tissue density during ischemia. Optical markers such as spot-size widening, spatial intensity shifts, and central intensity decrease are identified as reliable indicators of ischemia. Our findings suggest that multiwavelength reflectance analysis, particularly in the near-infrared range, provides a practical, noninvasive approach for continuously monitoring ischemic strokes. This technique indicates potential for improving early diagnosis and real-time monitoring of cerebral perfusion, which allows for continuous, noninvasive monitoring of cerebral perfusion and management of ischemic strokes, improving patient outcomes and clinical decision-making.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00809","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic stroke remains a leading cause of morbidity and mortality worldwide, and early diagnosis is critical for improving clinical outcomes. This paper presents an optical design framework combining speckle contrast optical spectroscopy (SCOS) with multiwavelength reflectance spectroscopy to monitor subtle changes in cerebral blood flow during ischemic events. The research aims to enable precise tissue interrogation using high-resolution, low-scatter imaging. Key to the system's accuracy is a 1.55 μm small beam waist, a grating density of 1300 grooves/mm, and a 15.53 μm depth of focus. The calculated effective focal length of 8333.33 μm enhances the resolution to 4.07 μm, improving the detection of minor changes in tissue optical properties. We investigate the sensitivity of various near-infrared wavelengths (660, 785, 800, and 976 nm) to ischemic-induced changes, with particular emphasis on the 976 nm wavelength, which demonstrates superior tissue penetration and increased sensitivity to variations in blood perfusion and tissue density during ischemia. Optical markers such as spot-size widening, spatial intensity shifts, and central intensity decrease are identified as reliable indicators of ischemia. Our findings suggest that multiwavelength reflectance analysis, particularly in the near-infrared range, provides a practical, noninvasive approach for continuously monitoring ischemic strokes. This technique indicates potential for improving early diagnosis and real-time monitoring of cerebral perfusion, which allows for continuous, noninvasive monitoring of cerebral perfusion and management of ischemic strokes, improving patient outcomes and clinical decision-making.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research