Optical Spectroscopy of Cerebral Blood Flow for Tissue Interrogation in Ischemic Stroke Diagnosis.

IF 3.9 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2025-03-05 Epub Date: 2025-02-20 DOI:10.1021/acschemneuro.4c00809
Bakr Ahmed Taha, Ahmed C Kadhim, Ali J Addie, Qussay Al-Jubouri, Ahmad S Azzahrani, Adawiya J Haider, Ali Najem Alkawaz, Norhana Arsad
{"title":"Optical Spectroscopy of Cerebral Blood Flow for Tissue Interrogation in Ischemic Stroke Diagnosis.","authors":"Bakr Ahmed Taha, Ahmed C Kadhim, Ali J Addie, Qussay Al-Jubouri, Ahmad S Azzahrani, Adawiya J Haider, Ali Najem Alkawaz, Norhana Arsad","doi":"10.1021/acschemneuro.4c00809","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke remains a leading cause of morbidity and mortality worldwide, and early diagnosis is critical for improving clinical outcomes. This paper presents an optical design framework combining speckle contrast optical spectroscopy (SCOS) with multiwavelength reflectance spectroscopy to monitor subtle changes in cerebral blood flow during ischemic events. The research aims to enable precise tissue interrogation using high-resolution, low-scatter imaging. Key to the system's accuracy is a 1.55 μm small beam waist, a grating density of 1300 grooves/mm, and a 15.53 μm depth of focus. The calculated effective focal length of 8333.33 μm enhances the resolution to 4.07 μm, improving the detection of minor changes in tissue optical properties. We investigate the sensitivity of various near-infrared wavelengths (660, 785, 800, and 976 nm) to ischemic-induced changes, with particular emphasis on the 976 nm wavelength, which demonstrates superior tissue penetration and increased sensitivity to variations in blood perfusion and tissue density during ischemia. Optical markers such as spot-size widening, spatial intensity shifts, and central intensity decrease are identified as reliable indicators of ischemia. Our findings suggest that multiwavelength reflectance analysis, particularly in the near-infrared range, provides a practical, noninvasive approach for continuously monitoring ischemic strokes. This technique indicates potential for improving early diagnosis and real-time monitoring of cerebral perfusion, which allows for continuous, noninvasive monitoring of cerebral perfusion and management of ischemic strokes, improving patient outcomes and clinical decision-making.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"895-907"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00809","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic stroke remains a leading cause of morbidity and mortality worldwide, and early diagnosis is critical for improving clinical outcomes. This paper presents an optical design framework combining speckle contrast optical spectroscopy (SCOS) with multiwavelength reflectance spectroscopy to monitor subtle changes in cerebral blood flow during ischemic events. The research aims to enable precise tissue interrogation using high-resolution, low-scatter imaging. Key to the system's accuracy is a 1.55 μm small beam waist, a grating density of 1300 grooves/mm, and a 15.53 μm depth of focus. The calculated effective focal length of 8333.33 μm enhances the resolution to 4.07 μm, improving the detection of minor changes in tissue optical properties. We investigate the sensitivity of various near-infrared wavelengths (660, 785, 800, and 976 nm) to ischemic-induced changes, with particular emphasis on the 976 nm wavelength, which demonstrates superior tissue penetration and increased sensitivity to variations in blood perfusion and tissue density during ischemia. Optical markers such as spot-size widening, spatial intensity shifts, and central intensity decrease are identified as reliable indicators of ischemia. Our findings suggest that multiwavelength reflectance analysis, particularly in the near-infrared range, provides a practical, noninvasive approach for continuously monitoring ischemic strokes. This technique indicates potential for improving early diagnosis and real-time monitoring of cerebral perfusion, which allows for continuous, noninvasive monitoring of cerebral perfusion and management of ischemic strokes, improving patient outcomes and clinical decision-making.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑血流光谱学在缺血性脑卒中诊断中的应用。
缺血性脑卒中仍然是世界范围内发病率和死亡率的主要原因,早期诊断对于改善临床结果至关重要。本文提出了一种结合散斑对比光谱(speckle contrast optical spectroscopy, SCOS)和多波长反射光谱(multiwavelength reflectivity spectroscopy)的光学设计框架,用于监测脑缺血事件时脑血流的细微变化。这项研究旨在利用高分辨率、低散射成像技术实现精确的组织检测。1.55 μm的光束腰、1300个槽/mm的光栅密度和15.53 μm的焦深是系统精度的关键。计算出的有效焦距为8333.33 μm,将分辨率提高到4.07 μm,提高了对组织光学性质微小变化的检测能力。我们研究了各种近红外波长(660、785、800和976 nm)对缺血引起的变化的敏感性,特别强调了976 nm波长,它显示了更好的组织穿透性,并且对缺血期间血液灌注和组织密度变化的敏感性增加。光学标记,如斑点大小扩大,空间强度变化和中心强度下降被认为是缺血的可靠指标。我们的研究结果表明,多波长反射分析,特别是在近红外范围内,为连续监测缺血性中风提供了一种实用的、无创的方法。该技术显示了改善早期诊断和实时脑灌注监测的潜力,从而允许对缺血性脑卒中进行持续、无创的脑灌注监测和管理,改善患者预后和临床决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
Dynamic Spatial Metabolomics Reveals Region-Specific Metabolic Reprogramming and Markers during Vascular Cognitive Impairment Progression. Differentiating Alzheimer's Aβ Isoforms Coaggregated in Cerebrospinal Fluid via Single-Particle Imaging. Discovery of VU6083859, a TAOK1 Selective Inhibitor, and VU6080195, a pan-TAOK Activator. Synergistic Effect of Mutations in the Amyloidogenic Core of Human Amylin (hAM) Affords a New Potent Inhibitor of hAM Fibrillation: Computational Design and Experimental Validation. Assessing the Multitarget Therapeutic Potential of Novel 9-Aminoacridine Derivatives for Alzheimer's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1