Discovery of ONO-2920632 (VU6011887): A Highly Selective and CNS Penetrant TREK-2 (TWIK-Related K+ Channel 2) Preferring Activator In Vivo Tool Compound.
Kentaro Yashiro, Yuzo Iwaki, Hirohito Urata, Masaya Kokubo, Takahiro Mori, Yoko Sekioka, Koichi Isami, Junya Kato, Joshua Wieting, Kevin M McGowan, Thomas M Bridges, Olivier Boutaud, Darren W Engers, Jerod S Denton, Haruto Kurata, Craig W Lindsley
{"title":"Discovery of ONO-2920632 (VU6011887): A Highly Selective and CNS Penetrant TREK-2 (TWIK-Related K+ Channel 2) Preferring Activator <i>In Vivo</i> Tool Compound.","authors":"Kentaro Yashiro, Yuzo Iwaki, Hirohito Urata, Masaya Kokubo, Takahiro Mori, Yoko Sekioka, Koichi Isami, Junya Kato, Joshua Wieting, Kevin M McGowan, Thomas M Bridges, Olivier Boutaud, Darren W Engers, Jerod S Denton, Haruto Kurata, Craig W Lindsley","doi":"10.1021/acschemneuro.5c00032","DOIUrl":null,"url":null,"abstract":"<p><p>Herein we describe our initial work on the K<sub>2</sub>P family of potassium ion channels with the chemical optimization and characterization of a novel series of TWIK-Related K+ Channel (TREK)-1/2 dual activators and TREK-2 preferring activators derived from a high-throughput screening hit. The exercise provided TREK activators with good CNS penetration and others with low CNS exposure to enable exploration of both central and peripheral TREK activation. From this, ONO-2920632 (VU6011887 = <b>19b</b>) emerged as a reasonably potent (human Tl<sup>+</sup>; TREK-1 EC<sub>50</sub> = 2.8 μM (95% <i>E</i><sub>max</sub>), TREK-2 EC<sub>50</sub> = 0.30 μM (184% <i>E</i><sub>max</sub>)), first-generation CNS penetrant (rat K<sub>p</sub> = 0.37) <i>in vivo</i> tool compound with selectivity versus the other K<sub>2</sub>P channels (>91-fold selective vs TASK1, TASK2, TASK3, TRAAK, TWIK2, and 31-fold selective vs TRESK) and no significant activity in a large ancillary pharmacology panel. ONO-2920632 (VU6011887) displayed robust, dose dependent efficacy when dosed orally in a mouse pain model (acetic acid writhing assay), where it was equipotent at 3 mg/kg to the assay standard indomethacin at 10 mg/kg. The therapeutic potential of TREK channel activation has long been hampered by a lack of selective, small molecule tools, and this work provides a variety of <i>in vivo</i> tool compounds for the community.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00032","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein we describe our initial work on the K2P family of potassium ion channels with the chemical optimization and characterization of a novel series of TWIK-Related K+ Channel (TREK)-1/2 dual activators and TREK-2 preferring activators derived from a high-throughput screening hit. The exercise provided TREK activators with good CNS penetration and others with low CNS exposure to enable exploration of both central and peripheral TREK activation. From this, ONO-2920632 (VU6011887 = 19b) emerged as a reasonably potent (human Tl+; TREK-1 EC50 = 2.8 μM (95% Emax), TREK-2 EC50 = 0.30 μM (184% Emax)), first-generation CNS penetrant (rat Kp = 0.37) in vivo tool compound with selectivity versus the other K2P channels (>91-fold selective vs TASK1, TASK2, TASK3, TRAAK, TWIK2, and 31-fold selective vs TRESK) and no significant activity in a large ancillary pharmacology panel. ONO-2920632 (VU6011887) displayed robust, dose dependent efficacy when dosed orally in a mouse pain model (acetic acid writhing assay), where it was equipotent at 3 mg/kg to the assay standard indomethacin at 10 mg/kg. The therapeutic potential of TREK channel activation has long been hampered by a lack of selective, small molecule tools, and this work provides a variety of in vivo tool compounds for the community.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research