Patterns of brain activity in choice or instructed go and no-go tasks.

IF 1.7 4区 医学 Q4 NEUROSCIENCES Experimental Brain Research Pub Date : 2025-02-21 DOI:10.1007/s00221-025-07027-6
Sanaz Attaripour Isfahani, Patrick McGurrin, Felipe Vial, Mark Hallett
{"title":"Patterns of brain activity in choice or instructed go and no-go tasks.","authors":"Sanaz Attaripour Isfahani, Patrick McGurrin, Felipe Vial, Mark Hallett","doi":"10.1007/s00221-025-07027-6","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of this study was to investigate the decision making process for choosing what movements to make. We used electroencephalography (EEG) to investigate patterns of the contingent negative variation (CNV) associated with free-choice decisions to move or abstain, comparing them to conditions where actions were commanded. Our primary hypothesis was that choice tasks would differ significantly from each other and exhibit EEG patterns akin to their command-driven counterparts after the decisions were made, at least, in the 50 ms block of time prior to movement. A secondary analysis evaluated post hoc comparisons of time, in 50 ms blocks, to understand the temporal development of the CNV for each condition. We also conducted an exploratory analysis of EEG event-related desynchronization (ERD) to identify patterns of brain activity associated with the decision-making process. This approach was taken due to the exploratory nature of our hypotheses concerning the spatial and temporal characteristics of EEG activity during these free-choice versus commanded tasks. We studied 12 right-handed healthy volunteers (7 women, mean age 53 years, range 39-73 years) with no prior history of neurological or major psychiatric illness. A CNV paradigm encompassing commanded and choice tasks was devised, with a 2500 ms interval between S1 and S2, while recording EEG and electromyography (EMG). S1 provided full information about the upcoming task, which was to be executed at the time of S2. We assessed CNV and explored whole scalp EEG activity, including both voltage as well as power in the alpha and beta frequency ranges. Clear and similar CNVs were observed for command and choice go tasks prior to the movements, contrasting with near-zero CNVs for the command and choice no-go tasks. Separation of CNVs for command go and no-go tasks occurred around 1600 ms post-S1, and choice CNVs separated about 2150 ms post-S1. Exploratory analysis revealed that beta power provided information about decision and preparation processes much earlier. The left dorsolateral prefrontal cortex (DLPFC) exhibited the initial sign of decision approximately 500 ms post-S1 for all tasks, with subsequent preparation for movement or restraint involving distinct activity in various brain regions. The localization of effects in the left DLPFC was determined by visual analysis of the informative electrode sites. The CNVs separate about 2 s after S1, and it appears that this process represents preparation for movement (or no movement). Exploration of the beta activity suggests an earlier decision process which leads eventually to subsequent task preparation and activation. Choice decisions lag slightly behind command decisions, with the CNV apparently reflecting motor implementation rather than the decision-making process. In a simple motor task with an exploratory analysis, both commanded and choice-based decisions are rapidly initiated in the left DLPFC. While the CNV distinguishes between go and no-go conditions, it primarily appears to signify preparation for implementation of the task following the earlier decision. Further controlled studies will be needed to confirm these results.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 3","pages":"73"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-025-07027-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this study was to investigate the decision making process for choosing what movements to make. We used electroencephalography (EEG) to investigate patterns of the contingent negative variation (CNV) associated with free-choice decisions to move or abstain, comparing them to conditions where actions were commanded. Our primary hypothesis was that choice tasks would differ significantly from each other and exhibit EEG patterns akin to their command-driven counterparts after the decisions were made, at least, in the 50 ms block of time prior to movement. A secondary analysis evaluated post hoc comparisons of time, in 50 ms blocks, to understand the temporal development of the CNV for each condition. We also conducted an exploratory analysis of EEG event-related desynchronization (ERD) to identify patterns of brain activity associated with the decision-making process. This approach was taken due to the exploratory nature of our hypotheses concerning the spatial and temporal characteristics of EEG activity during these free-choice versus commanded tasks. We studied 12 right-handed healthy volunteers (7 women, mean age 53 years, range 39-73 years) with no prior history of neurological or major psychiatric illness. A CNV paradigm encompassing commanded and choice tasks was devised, with a 2500 ms interval between S1 and S2, while recording EEG and electromyography (EMG). S1 provided full information about the upcoming task, which was to be executed at the time of S2. We assessed CNV and explored whole scalp EEG activity, including both voltage as well as power in the alpha and beta frequency ranges. Clear and similar CNVs were observed for command and choice go tasks prior to the movements, contrasting with near-zero CNVs for the command and choice no-go tasks. Separation of CNVs for command go and no-go tasks occurred around 1600 ms post-S1, and choice CNVs separated about 2150 ms post-S1. Exploratory analysis revealed that beta power provided information about decision and preparation processes much earlier. The left dorsolateral prefrontal cortex (DLPFC) exhibited the initial sign of decision approximately 500 ms post-S1 for all tasks, with subsequent preparation for movement or restraint involving distinct activity in various brain regions. The localization of effects in the left DLPFC was determined by visual analysis of the informative electrode sites. The CNVs separate about 2 s after S1, and it appears that this process represents preparation for movement (or no movement). Exploration of the beta activity suggests an earlier decision process which leads eventually to subsequent task preparation and activation. Choice decisions lag slightly behind command decisions, with the CNV apparently reflecting motor implementation rather than the decision-making process. In a simple motor task with an exploratory analysis, both commanded and choice-based decisions are rapidly initiated in the left DLPFC. While the CNV distinguishes between go and no-go conditions, it primarily appears to signify preparation for implementation of the task following the earlier decision. Further controlled studies will be needed to confirm these results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
期刊最新文献
Patterns of brain activity in choice or instructed go and no-go tasks. Correlates of gait speed changes during uneven terrain walking in older adults: differential roles of cognitive and sensorimotor function. Effector selection precedes movement specification: evidence from repetition effects in motor planning. Can visual acceleration evoke a sensation of tilt? Covariation of corticospinal excitability and the autonomous nervous system by virtual reality: the roller coaster effect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1