{"title":"The flux of energy in critical illness and the obesity paradox.","authors":"Ariel Jaitovich, Jesse B Hall","doi":"10.1152/physrev.00029.2024","DOIUrl":null,"url":null,"abstract":"<p><p>During critical illness, systemic inflammation causes organ-specific metabolic changes. In the immune and inflammatory compartments, predominantly anabolic reprogramming supports cellular replication and inflammatory response execution. Pari passu, catabolism of adipose tissue and skeletal muscle supplies carbon skeletons and enthalpy for inflammatory and immune cell anabolism. The liver plays a key role during these metabolic shifts in enabling adequate supply of glucose and ketone bodies to the circulation. While often perceived as passive surrogates of prehospitalization frailty, body mass constituents are active parties of an over-arching metabolic trade-off that is key for survival following acute insults. Muscle and adipose tissue remodel in response to critical illness and thus profoundly influence the systemic metabolic landscape during and after hospitalization. Whether obesity's effect on patient systemic metabolism and survival is paradoxically beneficial or not remains controversial. Substrate-induced epigenetic changes lead to abnormal transcriptional programs which in turn regulate metabolic pathways critical to patient survival. We present a summary of major mechanisms involved in the flux of energy in critical illness from body mass into immune response execution and suggest future research avenues focused on perturbed immune metabolic and epigenetic programs that could lead to improved understanding of these process, and eventually to better outcomes for the critically ill.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":""},"PeriodicalIF":29.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physrev.00029.2024","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During critical illness, systemic inflammation causes organ-specific metabolic changes. In the immune and inflammatory compartments, predominantly anabolic reprogramming supports cellular replication and inflammatory response execution. Pari passu, catabolism of adipose tissue and skeletal muscle supplies carbon skeletons and enthalpy for inflammatory and immune cell anabolism. The liver plays a key role during these metabolic shifts in enabling adequate supply of glucose and ketone bodies to the circulation. While often perceived as passive surrogates of prehospitalization frailty, body mass constituents are active parties of an over-arching metabolic trade-off that is key for survival following acute insults. Muscle and adipose tissue remodel in response to critical illness and thus profoundly influence the systemic metabolic landscape during and after hospitalization. Whether obesity's effect on patient systemic metabolism and survival is paradoxically beneficial or not remains controversial. Substrate-induced epigenetic changes lead to abnormal transcriptional programs which in turn regulate metabolic pathways critical to patient survival. We present a summary of major mechanisms involved in the flux of energy in critical illness from body mass into immune response execution and suggest future research avenues focused on perturbed immune metabolic and epigenetic programs that could lead to improved understanding of these process, and eventually to better outcomes for the critically ill.
期刊介绍:
Physiological Reviews is a highly regarded journal that covers timely issues in physiological and biomedical sciences. It is targeted towards physiologists, neuroscientists, cell biologists, biophysicists, and clinicians with a special interest in pathophysiology. The journal has an ISSN of 0031-9333 for print and 1522-1210 for online versions. It has a unique publishing frequency where articles are published individually, but regular quarterly issues are also released in January, April, July, and October. The articles in this journal provide state-of-the-art and comprehensive coverage of various topics. They are valuable for teaching and research purposes as they offer interesting and clearly written updates on important new developments. Physiological Reviews holds a prominent position in the scientific community and consistently ranks as the most impactful journal in the field of physiology.