An Observation-Driven Framework for Modeling Post-Fire Hydrologic Response: Evaluation for Two Central California Case Studies

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Water Resources Research Pub Date : 2025-02-22 DOI:10.1029/2023wr036582
Timothy M. Lahmers, Sujay V. Kumar, Shahryar K. Ahmad, Thomas Holmes, Augusto Getirana, Elijah Orland, Kim Locke, Nishan Kumar Biswas, Wanshu Nie, Justin Pflug, Kristen Whitney, Martha Anderson, Yun Yang
{"title":"An Observation-Driven Framework for Modeling Post-Fire Hydrologic Response: Evaluation for Two Central California Case Studies","authors":"Timothy M. Lahmers, Sujay V. Kumar, Shahryar K. Ahmad, Thomas Holmes, Augusto Getirana, Elijah Orland, Kim Locke, Nishan Kumar Biswas, Wanshu Nie, Justin Pflug, Kristen Whitney, Martha Anderson, Yun Yang","doi":"10.1029/2023wr036582","DOIUrl":null,"url":null,"abstract":"In a warming climate, wildfires are becoming increasingly common, especially in semi-arid environments. Wildfires can disrupt forest ecosystems and induce changes to the land surface. Collectively, these impacts can alter the hydrologic response of a catchment following a fire, resulting in increased potential for surface runoff, reduced evapotranspiration, and, ultimately, a higher risk for flash flooding and mass wasting. The timescale of post-fire recovery of hydrological processes to return to pre-fire conditions is not well established due to the lack of ground measurements. Accurate characterization of the impacts of fire on hydrologic response is also challenging to simulate, given the complex interplay of various processes. Here, we present a generalized framework to quantify the impacts of wildfire on runoff generation. We consider the disturbances in the vegetation and soil as the two main factors contributing to post-fire floods. Using an ensemble modeling structure to account for parameter uncertainty, remotely sensed leaf area index (LAI) is assimilated into a land surface model (LSM) to simulate vegetation disturbance, and the maximum land surface saturation LSM parameter is decreased to parameterize the soil disturbance following observed fires. We consider the impacts of fire-induced changes to LAI and soil saturation on hydrologic states like runoff and evapotranspiration for two case studies. These case studies demonstrate the general applicability of hydrophobicity formulation to serve as a guideline for exploring the range of hydrologic responses post-fire.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"50 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036582","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In a warming climate, wildfires are becoming increasingly common, especially in semi-arid environments. Wildfires can disrupt forest ecosystems and induce changes to the land surface. Collectively, these impacts can alter the hydrologic response of a catchment following a fire, resulting in increased potential for surface runoff, reduced evapotranspiration, and, ultimately, a higher risk for flash flooding and mass wasting. The timescale of post-fire recovery of hydrological processes to return to pre-fire conditions is not well established due to the lack of ground measurements. Accurate characterization of the impacts of fire on hydrologic response is also challenging to simulate, given the complex interplay of various processes. Here, we present a generalized framework to quantify the impacts of wildfire on runoff generation. We consider the disturbances in the vegetation and soil as the two main factors contributing to post-fire floods. Using an ensemble modeling structure to account for parameter uncertainty, remotely sensed leaf area index (LAI) is assimilated into a land surface model (LSM) to simulate vegetation disturbance, and the maximum land surface saturation LSM parameter is decreased to parameterize the soil disturbance following observed fires. We consider the impacts of fire-induced changes to LAI and soil saturation on hydrologic states like runoff and evapotranspiration for two case studies. These case studies demonstrate the general applicability of hydrophobicity formulation to serve as a guideline for exploring the range of hydrologic responses post-fire.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
期刊最新文献
An Observation-Driven Framework for Modeling Post-Fire Hydrologic Response: Evaluation for Two Central California Case Studies Monthly Crop Water Consumption of Irrigated Crops in the United States From 1981 to 2019 Increasing Large Precipitation Events and Low Available Water Holding Capacity Create the Conditions for Dry Land-Atmosphere Feedbacks in the Northeastern United States Investigating the Characteristics and Drivers of Slow Droughts and Flash Droughts: A Multi-Temporal Scale Drought Identification Framework Mechanisms of Solute Transport in Ice-Supersaturated Debris: 2. Rock Glacier Hydrology in Alpine Glacial-Periglacial Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1