Microbial Ecology to Ocean Carbon Cycling: From Genomes to Numerical Models

IF 11.3 1区 地球科学 Q1 ASTRONOMY & ASTROPHYSICS Annual Review of Earth and Planetary Sciences Pub Date : 2025-02-21 DOI:10.1146/annurev-earth-040523-020630
Naomi M. Levine, Harriet Alexander, Erin M. Bertrand, Victoria J. Coles, Stephanie Dutkiewicz, Suzana G. Leles, Emily J. Zakem
{"title":"Microbial Ecology to Ocean Carbon Cycling: From Genomes to Numerical Models","authors":"Naomi M. Levine, Harriet Alexander, Erin M. Bertrand, Victoria J. Coles, Stephanie Dutkiewicz, Suzana G. Leles, Emily J. Zakem","doi":"10.1146/annurev-earth-040523-020630","DOIUrl":null,"url":null,"abstract":"The oceans contain large reservoirs of inorganic and organic carbon and play a critical role in both global carbon cycling and climate. Most of the biogeochemical transformations in the oceans are driven by marine microbes. Thus, molecular processes occurring at the scale of single cells govern global geochemical dynamics, posing a challenge of scales. Understanding the processes controlling ocean carbon cycling from the cellular to the global scale requires the integration of multiple disciplines including microbiology, ecology, biogeochemistry, and computational fields such as numerical models and bioinformatics. A shared language and foundational knowledge will facilitate these interactions. This review provides the state of knowledge on the role marine microbes play in large-scale ocean carbon cycling through the lens of observational oceanography and biogeochemical models. We conclude by outlining ways in which the field can bridge the gap between -omics datasets and ocean models to understand ocean carbon cycling across scales. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> -Omic approaches are providing increasingly quantitative insight into the biogeochemical functions of marine microbial ecosystems. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Numerical models provide a tool for studying global carbon cycling by scaling from the microscale to the global scale. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The integration of -omics and numerical modeling generates new understanding of how microbial metabolisms and community dynamics set nutrient fluxes in the ocean. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"66 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-040523-020630","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The oceans contain large reservoirs of inorganic and organic carbon and play a critical role in both global carbon cycling and climate. Most of the biogeochemical transformations in the oceans are driven by marine microbes. Thus, molecular processes occurring at the scale of single cells govern global geochemical dynamics, posing a challenge of scales. Understanding the processes controlling ocean carbon cycling from the cellular to the global scale requires the integration of multiple disciplines including microbiology, ecology, biogeochemistry, and computational fields such as numerical models and bioinformatics. A shared language and foundational knowledge will facilitate these interactions. This review provides the state of knowledge on the role marine microbes play in large-scale ocean carbon cycling through the lens of observational oceanography and biogeochemical models. We conclude by outlining ways in which the field can bridge the gap between -omics datasets and ocean models to understand ocean carbon cycling across scales. -Omic approaches are providing increasingly quantitative insight into the biogeochemical functions of marine microbial ecosystems. Numerical models provide a tool for studying global carbon cycling by scaling from the microscale to the global scale. The integration of -omics and numerical modeling generates new understanding of how microbial metabolisms and community dynamics set nutrient fluxes in the ocean.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Earth and Planetary Sciences
Annual Review of Earth and Planetary Sciences 地学天文-地球科学综合
CiteScore
25.10
自引率
0.00%
发文量
25
期刊介绍: Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.
期刊最新文献
Microbial Ecology to Ocean Carbon Cycling: From Genomes to Numerical Models How Subduction Margin Processes and Properties Influence the Hikurangi Subduction Zone Subaerial Emergence of Continents on Archean Earth A Holistic View of Climate Sensitivity Fast and Slow Subduction Earthquakes in Latin America
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1