{"title":"Identifying surface formation and adhesion mechanisms of FOG deposits on sewer lines","authors":"Samrin A. Kusum, Moe Pourghaz, Joel J. Ducoste","doi":"10.1016/j.watres.2025.123340","DOIUrl":null,"url":null,"abstract":"Fat, oil, and grease (FOG) deposits contribute to 25% of Sanitary Sewer Overflows (SSOs) in the U.S. and is exacerbated by the aging sewer infrastructure. As the U.S. contemplates renovating its sewer systems, employing sustainable materials that inhibit FOG deposit adhesion could be crucial. This study delves into the saponified FOG deposit formation and adhesion mechanisms on various materials—concrete, Poly Vinyl Chloride (PVC), granite, limestone, and porous ceramic. Through extensive testing, these materials were evaluated for chemical composition, surface roughness, porosity, zeta potential, and calcium leaching potential. The findings indicate that materials with high calcium hydroxide leaching potential, high pore pH, and low zeta potential tend to adhere significant saponified FOG deposits. Conversely, reducing surface FOG deposit formation and adhesion on sewer lines requires materials to be engineered with low calcium hydroxide leaching and high zeta potential. Considering these factors, granite followed by PVC exhibited the best properties that demonstrated no FOG deposit adhesion. The outcomes of this study not only provide insight into the physical interactions governing FOG deposit adhesion but also suggest a targeted strategy for material selection and modification in sewer system renovations to mitigate Sanitary Sewer Overflows.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"31 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123340","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fat, oil, and grease (FOG) deposits contribute to 25% of Sanitary Sewer Overflows (SSOs) in the U.S. and is exacerbated by the aging sewer infrastructure. As the U.S. contemplates renovating its sewer systems, employing sustainable materials that inhibit FOG deposit adhesion could be crucial. This study delves into the saponified FOG deposit formation and adhesion mechanisms on various materials—concrete, Poly Vinyl Chloride (PVC), granite, limestone, and porous ceramic. Through extensive testing, these materials were evaluated for chemical composition, surface roughness, porosity, zeta potential, and calcium leaching potential. The findings indicate that materials with high calcium hydroxide leaching potential, high pore pH, and low zeta potential tend to adhere significant saponified FOG deposits. Conversely, reducing surface FOG deposit formation and adhesion on sewer lines requires materials to be engineered with low calcium hydroxide leaching and high zeta potential. Considering these factors, granite followed by PVC exhibited the best properties that demonstrated no FOG deposit adhesion. The outcomes of this study not only provide insight into the physical interactions governing FOG deposit adhesion but also suggest a targeted strategy for material selection and modification in sewer system renovations to mitigate Sanitary Sewer Overflows.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.