Seyed Babak Haji Seyed Asadollah, Ahmadreza Safaeinia, Sina Jarahizadeh, Francisco Javier Alcalá, Ahmad Sharafati, Antonio Jodar-Abellan
{"title":"Dissolved Organic Carbon Estimation in Lakes: Improving Machine Learning with Data Augmentation on Fusion of Multi-Sensor Remote Sensing Observations","authors":"Seyed Babak Haji Seyed Asadollah, Ahmadreza Safaeinia, Sina Jarahizadeh, Francisco Javier Alcalá, Ahmad Sharafati, Antonio Jodar-Abellan","doi":"10.1016/j.watres.2025.123350","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for estimating Dissolved Organic Carbon (DOC) concentrations in lakes considering both carbon sources and sink operators. Despite the critical role of DOC, the combined application of machine learning, as a robust predictor, and remote sensing technology, which reduces costly and time-intensive in-situ sampling, has been underexplored in DOC research. Focusing on lakes over the states of New York, Vermont and Maine (United States, U.S.), this study integrates in-situ DOC measurements with surface reflectance bands obtained from Landsat satellites between 2000 and 2020. Using these bands as inputs of the Random Forest (RF) predictive model, the introduced methodology aims to explore the ability of remote sensing data for large-scale DOC simulation. Initial results indicate low accuracy metrics and significant under-estimation due to the imbalance distribution of DOC samples. Statistical analysis showed that the mean DOC concentration was 5.37±3.37 mg/L (mean±one standard deviation), with peak up to 25 mg/L. A highly skewed distribution of chemical components towards the lower ranges can lead to model misrepresentation of extreme and hazardous events, as they are clouded by unimportant events due to significantly lower occurrence rates. To address this issue, the Synthetic Minority Over-sampling Technique (SMOTE) was applied as a key innovation, generating synthetic samples that enhance RF accuracy and reduce the associated errors. Fusion of in-situ and remote sensing data, combined with machine learning and data augmentation, significantly enhances DOC estimation accuracy, especially in high concentration ranges which are critical for environmental health. With prediction metrics of RMSE = 1.75, MAE = 1.09, and R<sup>2</sup> = 0.74, RF-SMOTE significantly improve the metrics obtained from stand-alone RF, particularly in estimating high DOC concentrations. Considering the product spatial resolution of 30 meters, the model's output provides potential revenue for global application in lake monitoring, even in remote regions where direct sampling is limited. This novel fusion of remote sensing, machine learning and data augmentation offers valuable insights for water quality management and understanding carbon cycling in aquatic ecosystems.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"2 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123350","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel approach for estimating Dissolved Organic Carbon (DOC) concentrations in lakes considering both carbon sources and sink operators. Despite the critical role of DOC, the combined application of machine learning, as a robust predictor, and remote sensing technology, which reduces costly and time-intensive in-situ sampling, has been underexplored in DOC research. Focusing on lakes over the states of New York, Vermont and Maine (United States, U.S.), this study integrates in-situ DOC measurements with surface reflectance bands obtained from Landsat satellites between 2000 and 2020. Using these bands as inputs of the Random Forest (RF) predictive model, the introduced methodology aims to explore the ability of remote sensing data for large-scale DOC simulation. Initial results indicate low accuracy metrics and significant under-estimation due to the imbalance distribution of DOC samples. Statistical analysis showed that the mean DOC concentration was 5.37±3.37 mg/L (mean±one standard deviation), with peak up to 25 mg/L. A highly skewed distribution of chemical components towards the lower ranges can lead to model misrepresentation of extreme and hazardous events, as they are clouded by unimportant events due to significantly lower occurrence rates. To address this issue, the Synthetic Minority Over-sampling Technique (SMOTE) was applied as a key innovation, generating synthetic samples that enhance RF accuracy and reduce the associated errors. Fusion of in-situ and remote sensing data, combined with machine learning and data augmentation, significantly enhances DOC estimation accuracy, especially in high concentration ranges which are critical for environmental health. With prediction metrics of RMSE = 1.75, MAE = 1.09, and R2 = 0.74, RF-SMOTE significantly improve the metrics obtained from stand-alone RF, particularly in estimating high DOC concentrations. Considering the product spatial resolution of 30 meters, the model's output provides potential revenue for global application in lake monitoring, even in remote regions where direct sampling is limited. This novel fusion of remote sensing, machine learning and data augmentation offers valuable insights for water quality management and understanding carbon cycling in aquatic ecosystems.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.