Xiaokang Liu , Hongrong Shi , Dazhi Yang , Xiaolong Chen , Xiang'ao Xia , Yang Xie
{"title":"Reducing the impact of climate change on renewable energy systems through wind–solar blending: A worldwide study with CMIP6","authors":"Xiaokang Liu , Hongrong Shi , Dazhi Yang , Xiaolong Chen , Xiang'ao Xia , Yang Xie","doi":"10.1016/j.solener.2025.113365","DOIUrl":null,"url":null,"abstract":"<div><div>Mitigating climate change has hitherto been a pressing issue for global sustainable development. Climate change can alter the frequency and intensity of extreme weather events, which in turn impacts solar and wind power generation. This study employs data from 10 CMIP6 models to estimate potential changes in global wind and photovoltaic (PV) power generation under three different Shared Socioeconomic Pathways (SSPs) during the critical period for global carbon neutrality (2040–2064). Results indicate that in Central Europe, PV potential (PV<sub>POT</sub>) increases by 8%, while extreme low PV output days (PV10) decrease by 10 days under SSP245. Conversely, in the Arabian Peninsula, PV<sub>POT</sub> decreases by 4% with PV10 increasing by 16 days. For wind power (WP), significant reductions up to 35% are observed in regions like Southern Russia or the Eastern United States, while WP increases by 40% in areas such as the Sahel or Central South America. Notably, the wind–solar hybrid system effectively mitigates extreme low-output events, with combined output variability reduced by 0.04 in Central Europe. The SSP585 scenario demonstrates favorable trends for wind power, with increases up to 34% in Northern India. These findings emphasize the importance of integrating hybrid systems to construct a resilient energy supply chain and adapt to spatially heterogeneous climate impacts.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"290 ","pages":"Article 113365"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25001288","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Mitigating climate change has hitherto been a pressing issue for global sustainable development. Climate change can alter the frequency and intensity of extreme weather events, which in turn impacts solar and wind power generation. This study employs data from 10 CMIP6 models to estimate potential changes in global wind and photovoltaic (PV) power generation under three different Shared Socioeconomic Pathways (SSPs) during the critical period for global carbon neutrality (2040–2064). Results indicate that in Central Europe, PV potential (PVPOT) increases by 8%, while extreme low PV output days (PV10) decrease by 10 days under SSP245. Conversely, in the Arabian Peninsula, PVPOT decreases by 4% with PV10 increasing by 16 days. For wind power (WP), significant reductions up to 35% are observed in regions like Southern Russia or the Eastern United States, while WP increases by 40% in areas such as the Sahel or Central South America. Notably, the wind–solar hybrid system effectively mitigates extreme low-output events, with combined output variability reduced by 0.04 in Central Europe. The SSP585 scenario demonstrates favorable trends for wind power, with increases up to 34% in Northern India. These findings emphasize the importance of integrating hybrid systems to construct a resilient energy supply chain and adapt to spatially heterogeneous climate impacts.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass