Entropy-enhanced batch sampling and conformal learning in VGAE for physics-informed causal discovery and fault diagnosis

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2025-02-20 DOI:10.1016/j.compchemeng.2025.109053
Mohammadhossein Modirrousta, Alireza Memarian, Biao Huang
{"title":"Entropy-enhanced batch sampling and conformal learning in VGAE for physics-informed causal discovery and fault diagnosis","authors":"Mohammadhossein Modirrousta,&nbsp;Alireza Memarian,&nbsp;Biao Huang","doi":"10.1016/j.compchemeng.2025.109053","DOIUrl":null,"url":null,"abstract":"<div><div>Industry 4.0 has increased the demand for advanced fault detection and diagnosis (FDD) in complex industrial processes. This research introduces a novel approach to causal discovery and FDD using Variational Graph Autoencoders (VGAEs) enhanced with physics-informed constraints and conformal learning. Our method addresses limitations in conventional techniques, such as Granger causality, which struggle with high-dimensional, nonlinear systems. By integrating Graph Convolutional Networks (GCNs) and an entropy-based dynamic edge sampling method, the framework focuses on high-uncertainty regions of the causal graph. Conformal learning establishes rigorous thresholds for causal inference. Validated through simulation and case studies, including an Australian refinery and the Tennessee Eastman Process, our approach improves causal discovery accuracy, reduces spurious connections, and enhances fault classification. Integrating domain-specific physics information also led to faster convergence and reduced computational demands. This research provides an efficient, statistically robust approach for causal discovery and FDD in complex industrial systems.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109053"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000572","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Industry 4.0 has increased the demand for advanced fault detection and diagnosis (FDD) in complex industrial processes. This research introduces a novel approach to causal discovery and FDD using Variational Graph Autoencoders (VGAEs) enhanced with physics-informed constraints and conformal learning. Our method addresses limitations in conventional techniques, such as Granger causality, which struggle with high-dimensional, nonlinear systems. By integrating Graph Convolutional Networks (GCNs) and an entropy-based dynamic edge sampling method, the framework focuses on high-uncertainty regions of the causal graph. Conformal learning establishes rigorous thresholds for causal inference. Validated through simulation and case studies, including an Australian refinery and the Tennessee Eastman Process, our approach improves causal discovery accuracy, reduces spurious connections, and enhances fault classification. Integrating domain-specific physics information also led to faster convergence and reduced computational demands. This research provides an efficient, statistically robust approach for causal discovery and FDD in complex industrial systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Entropy-enhanced batch sampling and conformal learning in VGAE for physics-informed causal discovery and fault diagnosis Noninvasive inline imaging and computer vision-based quality variable estimation for continuous slug-flow crystallizers Editorial Board ChemBERTa embeddings and ensemble learning for prediction of density and melting point of deep eutectic solvents with hybrid features From automated to autonomous process operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1