Noninvasive inline imaging and computer vision-based quality variable estimation for continuous slug-flow crystallizers

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2025-02-19 DOI:10.1016/j.compchemeng.2025.109067
Derrick Adams , Jay H. Lee , Shin Hyuk Kim , Seongmin Heo
{"title":"Noninvasive inline imaging and computer vision-based quality variable estimation for continuous slug-flow crystallizers","authors":"Derrick Adams ,&nbsp;Jay H. Lee ,&nbsp;Shin Hyuk Kim ,&nbsp;Seongmin Heo","doi":"10.1016/j.compchemeng.2025.109067","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a transformative approach for the real-time monitoring of continuous slug-flow crystallizers in the pharmaceutical and fine chemical industries, marking a shift from traditional batch processing to continuous manufacturing. By leveraging advanced computer vision techniques within inline imaging systems, including single, binocular, and trinocular stereo visions, we offer a novel solution for the multispatial monitoring and analysis of the crystallization process. This methodology facilitates the automatic detection of solution slugs and bulk crystal regions, enabling the estimation of dynamic bulk crystal density, slug volumes, and porosity in real time. The deployment of ResNet18 and Mask R-CNN models underpins the method's efficacy, demonstrating remarkable performance metrics: ResNet18 ensures precise image detection, while Mask R-CNN achieves an average precision (AP) of 96.4%, with 100% at both AP50 and AP75 thresholds for bulk crystals and solution slugs’ segmentation. These results validate the models’ accuracy and reliability in estimating quality variables essential for continuous slug flow crystallization. This advancement not only addresses the limitations of existing monitoring methods but also signifies a leap forward in applying computer vision for process monitoring, offering significant implications for enhancing decision-making, optimization, and control in continuous manufacturing operations.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109067"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000717","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a transformative approach for the real-time monitoring of continuous slug-flow crystallizers in the pharmaceutical and fine chemical industries, marking a shift from traditional batch processing to continuous manufacturing. By leveraging advanced computer vision techniques within inline imaging systems, including single, binocular, and trinocular stereo visions, we offer a novel solution for the multispatial monitoring and analysis of the crystallization process. This methodology facilitates the automatic detection of solution slugs and bulk crystal regions, enabling the estimation of dynamic bulk crystal density, slug volumes, and porosity in real time. The deployment of ResNet18 and Mask R-CNN models underpins the method's efficacy, demonstrating remarkable performance metrics: ResNet18 ensures precise image detection, while Mask R-CNN achieves an average precision (AP) of 96.4%, with 100% at both AP50 and AP75 thresholds for bulk crystals and solution slugs’ segmentation. These results validate the models’ accuracy and reliability in estimating quality variables essential for continuous slug flow crystallization. This advancement not only addresses the limitations of existing monitoring methods but also signifies a leap forward in applying computer vision for process monitoring, offering significant implications for enhancing decision-making, optimization, and control in continuous manufacturing operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Entropy-enhanced batch sampling and conformal learning in VGAE for physics-informed causal discovery and fault diagnosis Noninvasive inline imaging and computer vision-based quality variable estimation for continuous slug-flow crystallizers Editorial Board ChemBERTa embeddings and ensemble learning for prediction of density and melting point of deep eutectic solvents with hybrid features From automated to autonomous process operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1