SlMYB1R1-SlSWEET12c module synergistically promotes sugar accumulation in tomato fruits

IF 6.2 1区 生物学 Q1 PLANT SCIENCES The Plant Journal Pub Date : 2025-02-22 DOI:10.1111/tpj.70062
Hui Liu, Jia-Qi Zhang, Rong-Rong Zhang, Chen Chen, Jian-Ping Tao, Jin-Song Xiong, Ai-Sheng Xiong
{"title":"SlMYB1R1-SlSWEET12c module synergistically promotes sugar accumulation in tomato fruits","authors":"Hui Liu,&nbsp;Jia-Qi Zhang,&nbsp;Rong-Rong Zhang,&nbsp;Chen Chen,&nbsp;Jian-Ping Tao,&nbsp;Jin-Song Xiong,&nbsp;Ai-Sheng Xiong","doi":"10.1111/tpj.70062","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Tomato (<i>Solanum lycopersium</i>), a globally significant vegetable crop prized for its distinctive flavor, relies on efficient sugar allocation for fruit development. Despite this, the molecular module underlying the translocation of sugars from sources to sinks within the tomato remains elusive. Sugar will eventually be exported transporters (SWEETs), a class of proteins known to mediate sugar transport, have been implicated in the process. Here, we discovered that SlSWEET12c, belonged to subfamily III, which was markedly upregulated during the development of tomato fruits. The subcellular localization of SlSWEET12c-GFP to the plasma and vacuolar membrane supported its putative role in apoplasmic sucrose transport. Complementary growth in a yeast (<i>Saccharomyces cerevisiae</i>) mutant strain SUSY7/ura3 confirmed SlSWEET12c with sucrose transport activity. Overexpressing and CRISPR/Cas9-mediated knockdown of SlSWEET12c in tomato plants demonstrated its role in promoting sugar accumulation in fruits. Additionally, the MYB transcription factor SlMYB1R1 was obtained by screening the cDNA library of tomato, which was highly expressed during tomato fruit development with a similar pattern to <i>SlSWEET12c</i>. The SlMYB1R1 could bind to the <i>SlSWEET12c</i> promoter and regulate its activity, thereby positively promoting sugar accumulation in tomato fruits. Collectively, our findings presented a novel role for the SlMYB1R1-<i>SlSWEET12c</i> module in facilitating sugar accumulation and provided a basis for future efforts to breed crops with enhanced sugar content.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 4","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70062","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tomato (Solanum lycopersium), a globally significant vegetable crop prized for its distinctive flavor, relies on efficient sugar allocation for fruit development. Despite this, the molecular module underlying the translocation of sugars from sources to sinks within the tomato remains elusive. Sugar will eventually be exported transporters (SWEETs), a class of proteins known to mediate sugar transport, have been implicated in the process. Here, we discovered that SlSWEET12c, belonged to subfamily III, which was markedly upregulated during the development of tomato fruits. The subcellular localization of SlSWEET12c-GFP to the plasma and vacuolar membrane supported its putative role in apoplasmic sucrose transport. Complementary growth in a yeast (Saccharomyces cerevisiae) mutant strain SUSY7/ura3 confirmed SlSWEET12c with sucrose transport activity. Overexpressing and CRISPR/Cas9-mediated knockdown of SlSWEET12c in tomato plants demonstrated its role in promoting sugar accumulation in fruits. Additionally, the MYB transcription factor SlMYB1R1 was obtained by screening the cDNA library of tomato, which was highly expressed during tomato fruit development with a similar pattern to SlSWEET12c. The SlMYB1R1 could bind to the SlSWEET12c promoter and regulate its activity, thereby positively promoting sugar accumulation in tomato fruits. Collectively, our findings presented a novel role for the SlMYB1R1-SlSWEET12c module in facilitating sugar accumulation and provided a basis for future efforts to breed crops with enhanced sugar content.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SlMYB1R1-SlSWEET12c 模块协同促进番茄果实的糖分积累
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
期刊最新文献
The thylakoid lumen Deg1 protease affects non-photochemical quenching via the levels of violaxanthin de-epoxidase and PsbS Emerging frontiers in sorghum genetic engineering Divergence in the effects of sugar feedback regulation on the major gene regulatory network and metabolism of photosynthesis in leaves between the two founding Saccharum species The gap-free genome assembly and multi-omics analyses illustrate the evolutionary history and the synthesis of medicinal components of Ligustrum lucidum SlMYB1R1-SlSWEET12c module synergistically promotes sugar accumulation in tomato fruits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1