Talant Ruzmetov, Ta I Hung, Saisri Padmaja Jonnalagedda, Si-Han Chen, Parisa Fasihianifard, Zhefeng Guo, Bir Bhanu, Chia-En A Chang
{"title":"Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning.","authors":"Talant Ruzmetov, Ta I Hung, Saisri Padmaja Jonnalagedda, Si-Han Chen, Parisa Fasihianifard, Zhefeng Guo, Bir Bhanu, Chia-En A Chang","doi":"10.1021/acs.jcim.4c01838","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins are inherently dynamic, and their conformational ensembles play a crucial role in biological function. Large-scale motions may govern the protein structure-function relationship, and numerous transient but stable conformations of intrinsically disordered proteins (IDPs) can play a crucial role in biological function. Investigating conformational ensembles to understand regulations and disease-related aggregations of IDPs is challenging, both experimentally and computationally. In this paper, we first introduce a deep learning-based model, termed Internal Coordinate Net (ICoN), which learns the physical principles of conformational changes from molecular dynamics simulation data. Second, we selected data points through interpolation in the learned latent space to rapidly identify novel synthetic conformations with sophisticated and large-scale side chains and backbone arrangements. Third, with the highly dynamic amyloid-β<sub>1-42</sub> (Aβ42) monomer, our deep learning model provided a comprehensive sampling of Aβ42's conformational landscape. Analysis of these synthetic conformations revealed conformational clusters that could be used to rationalize experimental findings. Additionally, the method can identify novel conformations with important interactions in atomistic details that are not included in the training data. New synthetic conformations showed distinct side chain rearrangements that are probed by our electron paramagnetic resonance and amino acid substitution studies. This approach is highly transferable and can be used for any available data for training. The work also demonstrated the ability of deep learning to utilize natural atomistic motions in protein conformation sampling.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01838","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Proteins are inherently dynamic, and their conformational ensembles play a crucial role in biological function. Large-scale motions may govern the protein structure-function relationship, and numerous transient but stable conformations of intrinsically disordered proteins (IDPs) can play a crucial role in biological function. Investigating conformational ensembles to understand regulations and disease-related aggregations of IDPs is challenging, both experimentally and computationally. In this paper, we first introduce a deep learning-based model, termed Internal Coordinate Net (ICoN), which learns the physical principles of conformational changes from molecular dynamics simulation data. Second, we selected data points through interpolation in the learned latent space to rapidly identify novel synthetic conformations with sophisticated and large-scale side chains and backbone arrangements. Third, with the highly dynamic amyloid-β1-42 (Aβ42) monomer, our deep learning model provided a comprehensive sampling of Aβ42's conformational landscape. Analysis of these synthetic conformations revealed conformational clusters that could be used to rationalize experimental findings. Additionally, the method can identify novel conformations with important interactions in atomistic details that are not included in the training data. New synthetic conformations showed distinct side chain rearrangements that are probed by our electron paramagnetic resonance and amino acid substitution studies. This approach is highly transferable and can be used for any available data for training. The work also demonstrated the ability of deep learning to utilize natural atomistic motions in protein conformation sampling.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.