Rabbit model of oxidative stress-induced retinal degeneration

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Biology and Medicine Pub Date : 2025-02-19 DOI:10.1016/j.freeradbiomed.2025.02.024
Yogita Kanan , Jingwen Zhang , Alexandra Bernardo-Colón , Subrata Debnath , Mahmood Khan , S. Patricia Becerra , Peter A. Campochiaro
{"title":"Rabbit model of oxidative stress-induced retinal degeneration","authors":"Yogita Kanan ,&nbsp;Jingwen Zhang ,&nbsp;Alexandra Bernardo-Colón ,&nbsp;Subrata Debnath ,&nbsp;Mahmood Khan ,&nbsp;S. Patricia Becerra ,&nbsp;Peter A. Campochiaro","doi":"10.1016/j.freeradbiomed.2025.02.024","DOIUrl":null,"url":null,"abstract":"<div><div>Retinitis pigmentosa (RP) is a disorder that results in the death of rod photoreceptors in the retina, caused by several different mutations. As rods are 95 % of the photoreceptors in the eye and consume the most oxygen, their death causes tissue hyperoxia resulting in oxidative stress in the retina. Oxidative stress is implicated in the pathogenesis of photoreceptor death in RP. Therefore, oxidative stress models are very relevant to identifying drugs to prevent photoreceptor death in RP. Rabbits are an excellent model to study retinal degeneration due to their large eyes and therefore larger subretinal and vitreous space, makes it easier for surgical and drug interventions techniques. Herein, we have created a rabbit model of oxidative stress-induced retinal degeneration using paraquat (PQ), a known oxidant. PQ causes oxidative stress in the retina, that results in functional and structural loss of photoreceptors. We also show that using an antioxidant PEDF[H105A], we were able to blunt the damage to photoreceptors caused by PQ. Therefore, this rabbit model of oxidative stress-induced retinal degeneration will serve as an excellent model to test a wide array of surgical and drug interventions techniques.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"231 ","pages":"Pages 48-56"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584925001054","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Retinitis pigmentosa (RP) is a disorder that results in the death of rod photoreceptors in the retina, caused by several different mutations. As rods are 95 % of the photoreceptors in the eye and consume the most oxygen, their death causes tissue hyperoxia resulting in oxidative stress in the retina. Oxidative stress is implicated in the pathogenesis of photoreceptor death in RP. Therefore, oxidative stress models are very relevant to identifying drugs to prevent photoreceptor death in RP. Rabbits are an excellent model to study retinal degeneration due to their large eyes and therefore larger subretinal and vitreous space, makes it easier for surgical and drug interventions techniques. Herein, we have created a rabbit model of oxidative stress-induced retinal degeneration using paraquat (PQ), a known oxidant. PQ causes oxidative stress in the retina, that results in functional and structural loss of photoreceptors. We also show that using an antioxidant PEDF[H105A], we were able to blunt the damage to photoreceptors caused by PQ. Therefore, this rabbit model of oxidative stress-induced retinal degeneration will serve as an excellent model to test a wide array of surgical and drug interventions techniques.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
期刊最新文献
Corrigendum to "Macrophages hijack carbapenem-resistance hypervirulent Klebsiella pneumoniae by blocking SLC7A11/GSH-manipulated iron oxidative stress" [Free Radic Biol Med. 230 (2025) 234-247]. Tanycyte proliferation and migration through the sonic hedgehog pathway restores hypothalamic function after ischemic injury. EPIC-1042 alleviates cerebral ischemic/reperfusion injury through TAX1BP1-induced mitophagy. The Two Faces of Coenzyme A in Cellular Biology. Carboxylesterase 2A gene knockout or enzyme inhibition alleviates steatohepatitis in rats by regulating PPARγ and endoplasmic reticulum stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1