EPIC-1042 alleviates cerebral ischemic/reperfusion injury through TAX1BP1-induced mitophagy.

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Biology and Medicine Pub Date : 2025-03-17 DOI:10.1016/j.freeradbiomed.2025.03.023
Jiasheng Ju, Chunchao Cheng, Longtao Cui, Biao Hong, Qi Zhan, Qixue Wang, Xiaoteng Cui, Dongyuan Su, Yanping Huang, Chunsheng Kang
{"title":"EPIC-1042 alleviates cerebral ischemic/reperfusion injury through TAX1BP1-induced mitophagy.","authors":"Jiasheng Ju, Chunchao Cheng, Longtao Cui, Biao Hong, Qi Zhan, Qixue Wang, Xiaoteng Cui, Dongyuan Su, Yanping Huang, Chunsheng Kang","doi":"10.1016/j.freeradbiomed.2025.03.023","DOIUrl":null,"url":null,"abstract":"<p><p>Post ischemia-reperfusion (I/R) injury, an upregulation in Polymerase I and transcript release factor (PTRF) expression is observed. PTRF is implicated in the regulation of various cellular processes within neuronal cells, thereby exacerbating the deleterious effects of I/R injury. EPIC-1042 is a small molecule pharmacological agent that exhibits specificity in binding to PTRF. Therefore, this study aimed to explore whether EPIC-1042 could be used as a treatment for I/R injury. To achieve this goal, we observed brain injury in mice following EPIC-1042 pre-administration, and then transitioned to therapeutic administration. After observing the pre-protective and therapeutic effects of the drug, proteomic analysis revealed that the expression of TAX1BP1 continued to decline in a time-dependent manner, while EPIC-1042 was able to inhibit this decline. However, the function of TAX1BP1 in ischemic stroke is not yet fully understood. Subsequent experiments confirmed that the addition of EPIC-1042 resulted in an enhancement of mitophagy. Silencing the expression of TAX1BP1 abrogated the drug's effects, indicating that EPIC-1042 exerts a protective function by promoting mitophagy via TAX1BP1 mediation. We further investigated the synergistic effects of EPIC-1042 and edaravone by administering the two drugs in combination, observing an enhanced therapeutic efficacy compared to the administration of each drug alone. Subsequently, we optimized the administration protocol for the two drugs by utilizing liposome encapsulation for both drugs. This approach enabled us to achieve significant therapeutic outcomes while reducing both the dosage and frequency of administration, thereby demonstrating the potential for clinical translation of EPIC-1042.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.03.023","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Post ischemia-reperfusion (I/R) injury, an upregulation in Polymerase I and transcript release factor (PTRF) expression is observed. PTRF is implicated in the regulation of various cellular processes within neuronal cells, thereby exacerbating the deleterious effects of I/R injury. EPIC-1042 is a small molecule pharmacological agent that exhibits specificity in binding to PTRF. Therefore, this study aimed to explore whether EPIC-1042 could be used as a treatment for I/R injury. To achieve this goal, we observed brain injury in mice following EPIC-1042 pre-administration, and then transitioned to therapeutic administration. After observing the pre-protective and therapeutic effects of the drug, proteomic analysis revealed that the expression of TAX1BP1 continued to decline in a time-dependent manner, while EPIC-1042 was able to inhibit this decline. However, the function of TAX1BP1 in ischemic stroke is not yet fully understood. Subsequent experiments confirmed that the addition of EPIC-1042 resulted in an enhancement of mitophagy. Silencing the expression of TAX1BP1 abrogated the drug's effects, indicating that EPIC-1042 exerts a protective function by promoting mitophagy via TAX1BP1 mediation. We further investigated the synergistic effects of EPIC-1042 and edaravone by administering the two drugs in combination, observing an enhanced therapeutic efficacy compared to the administration of each drug alone. Subsequently, we optimized the administration protocol for the two drugs by utilizing liposome encapsulation for both drugs. This approach enabled us to achieve significant therapeutic outcomes while reducing both the dosage and frequency of administration, thereby demonstrating the potential for clinical translation of EPIC-1042.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
期刊最新文献
EPIC-1042 alleviates cerebral ischemic/reperfusion injury through TAX1BP1-induced mitophagy. The Two Faces of Coenzyme A in Cellular Biology. Carboxylesterase 2A gene knockout or enzyme inhibition alleviates steatohepatitis in rats by regulating PPARγ and endoplasmic reticulum stress Corrigendum to "Nox 4 regulates the eNOS uncoupling process in aging endothelial cells" [Free Rad. Biol. Med. 113 (2017) 26-35]. Dried blood spot analysis of long-chain polyunsaturated fatty acids and oxylipins for monitoring heart failure1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1