The medial olivocochlear efferent pathway potentiates cochlear amplification in response to hearing loss.

IF 4.4 2区 医学 Q1 NEUROSCIENCES Journal of Neuroscience Pub Date : 2025-02-21 DOI:10.1523/JNEUROSCI.2103-24.2025
Patricia M Quiñones, Michelle Pei, Hemant Srivastava, Ariadna Cobo-Cuan, Marcela A Morán, Bong Jik Kim, Clayton B Walker, Michael J Serafino, Frank Macias-Escriva, Juemei Wang, James B Dewey, Brian E Applegate, Matthew J McGinley, John S Oghalai
{"title":"The medial olivocochlear efferent pathway potentiates cochlear amplification in response to hearing loss.","authors":"Patricia M Quiñones, Michelle Pei, Hemant Srivastava, Ariadna Cobo-Cuan, Marcela A Morán, Bong Jik Kim, Clayton B Walker, Michael J Serafino, Frank Macias-Escriva, Juemei Wang, James B Dewey, Brian E Applegate, Matthew J McGinley, John S Oghalai","doi":"10.1523/JNEUROSCI.2103-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>The mammalian cochlea receives efferent feedback from the brain. Many functions for this feedback have been hypothesized, including on short timescales, such as mediating attentional states, and long timescales, such as buffering acoustic trauma. Testing these hypotheses has been impeded by an inability to make direct measurements of efferent effects in awake animals. Here, we assessed the role of the medial olivocochlear (MOC) efferent nerve fibers on cochlear amplification by measuring organ of Corti vibratory responses to sound in both sexes of awake and anesthetized mice. We studied long-term effects by genetically ablating the efferents and/or afferents. Cochlear amplification increased with deafferentation using VGLUT3<sup>-/-</sup> mice, but only when the efferents were intact, associated with increased activity within OHCs and supporting cells. Removing both the afferents and the efferents using VGLUT3<sup>-/-</sup> Alpha9<sup>-/-</sup> mice did not cause this effect. To test for short-term effects, we recorded sound-evoked vibrations while using pupillometry to measure neuromodulatory brain state. We found no state dependence of cochlear amplification or of the auditory brainstem response. However, state dependence was apparent in the downstream inferior colliculus. Thus, MOC efferents upregulate cochlear amplification chronically with hearing loss, but not acutely with brain state fluctuations. This pathway may partially compensate for hearing loss while mediating associated symptoms, such as tinnitus and hyperacusis.<b>Significance Statement</b> The functional role of efferent innervation of the mammalian cochlea has remained in question. Here we show that the medial olivocochlear efferent system chronically potentiates cochlear sensitivity in response to removing the afferent signal but does not affect sensitivity in response to fluctuations in pupil-indexed brain state. While partially compensating for hearing loss, the efferent-mediated chronic potentiation may also contribute to associated symptoms of hearing loss, such as tinnitus and hyperacusis.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.2103-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The mammalian cochlea receives efferent feedback from the brain. Many functions for this feedback have been hypothesized, including on short timescales, such as mediating attentional states, and long timescales, such as buffering acoustic trauma. Testing these hypotheses has been impeded by an inability to make direct measurements of efferent effects in awake animals. Here, we assessed the role of the medial olivocochlear (MOC) efferent nerve fibers on cochlear amplification by measuring organ of Corti vibratory responses to sound in both sexes of awake and anesthetized mice. We studied long-term effects by genetically ablating the efferents and/or afferents. Cochlear amplification increased with deafferentation using VGLUT3-/- mice, but only when the efferents were intact, associated with increased activity within OHCs and supporting cells. Removing both the afferents and the efferents using VGLUT3-/- Alpha9-/- mice did not cause this effect. To test for short-term effects, we recorded sound-evoked vibrations while using pupillometry to measure neuromodulatory brain state. We found no state dependence of cochlear amplification or of the auditory brainstem response. However, state dependence was apparent in the downstream inferior colliculus. Thus, MOC efferents upregulate cochlear amplification chronically with hearing loss, but not acutely with brain state fluctuations. This pathway may partially compensate for hearing loss while mediating associated symptoms, such as tinnitus and hyperacusis.Significance Statement The functional role of efferent innervation of the mammalian cochlea has remained in question. Here we show that the medial olivocochlear efferent system chronically potentiates cochlear sensitivity in response to removing the afferent signal but does not affect sensitivity in response to fluctuations in pupil-indexed brain state. While partially compensating for hearing loss, the efferent-mediated chronic potentiation may also contribute to associated symptoms of hearing loss, such as tinnitus and hyperacusis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
期刊最新文献
The medial olivocochlear efferent pathway potentiates cochlear amplification in response to hearing loss. Ultra-high field fMRI reveals effect of ketamine on vocal processing in common marmosets. Detection of individual differences encoded in sequential variations of elements in zebra finch songs. Spatial Processing Enhancement in Prefrontal Cortex for Rapid Detection of Valuable Objects. Optimal Estimation of Local Motion-in-Depth with Naturalistic Stimuli.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1