Lu Jiang, Zhuoyao Mai, Jiguang Peng, Tao Du, Weifeng Wang, Xiran Chen, Chen Jiang, Yantao Luo, Hui Chen, Lijie Song, Nengyong Ouyang, Chao Chen, Ping Yuan
{"title":"Identification of cryptic breakpoints through single-tube long fragment read whole genome sequencing based on preimplantation genetic testing.","authors":"Lu Jiang, Zhuoyao Mai, Jiguang Peng, Tao Du, Weifeng Wang, Xiran Chen, Chen Jiang, Yantao Luo, Hui Chen, Lijie Song, Nengyong Ouyang, Chao Chen, Ping Yuan","doi":"10.1038/s41525-025-00471-x","DOIUrl":null,"url":null,"abstract":"<p><p>This study utilized single-tube long fragment read whole genome sequencing (stLFR WGS) to identify cryptic chromosomally balanced translocations in preimplantation genetic testing (PGT), aiming to improve outcomes for couples experiencing recurrent pregnancy loss (RPL). G-banded karyotyping initially revealed normal results for Family 1 and a reciprocal translocation for Family 2. However, PGT's low-coverage WGS uncovered recurrent copy number variations (CNVs) that contradicted the initial findings. Further analysis using stLFR WGS and Sanger sequencing precisely located the breakpoints, revealing a balanced translocation between chromosomes 7 and 13 in Family 1's male and a complex translocation involving chromosomes 9, 10, and 11 in Family 2's female. By selecting non-carrier embryos for transfer, the study resulted in successful births of healthy infants. These findings highlight the critical role of PGT in detecting concealed chromosomal rearrangements and demonstrate stLFR WGS as an effective diagnostic tool for breakpoint identification, significantly impacting reproductive decisions for couples with cryptic balanced translocations and RPL.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"10 1","pages":"15"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845665/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-025-00471-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
This study utilized single-tube long fragment read whole genome sequencing (stLFR WGS) to identify cryptic chromosomally balanced translocations in preimplantation genetic testing (PGT), aiming to improve outcomes for couples experiencing recurrent pregnancy loss (RPL). G-banded karyotyping initially revealed normal results for Family 1 and a reciprocal translocation for Family 2. However, PGT's low-coverage WGS uncovered recurrent copy number variations (CNVs) that contradicted the initial findings. Further analysis using stLFR WGS and Sanger sequencing precisely located the breakpoints, revealing a balanced translocation between chromosomes 7 and 13 in Family 1's male and a complex translocation involving chromosomes 9, 10, and 11 in Family 2's female. By selecting non-carrier embryos for transfer, the study resulted in successful births of healthy infants. These findings highlight the critical role of PGT in detecting concealed chromosomal rearrangements and demonstrate stLFR WGS as an effective diagnostic tool for breakpoint identification, significantly impacting reproductive decisions for couples with cryptic balanced translocations and RPL.
NPJ Genomic MedicineBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍:
npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine.
The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.