Visualization of the microscopic mechanism of slurry infiltration and filter cake formation for slurry shield tunneling in saturated sand: A microfluidic chip experiment

IF 4.9 2区 工程技术 Q1 ENGINEERING, CIVIL Transportation Geotechnics Pub Date : 2025-02-20 DOI:10.1016/j.trgeo.2025.101529
Yanbo Chen , Hao Liu , Yufeng Gao , Xiaowei Ye , Haowen Guo , Yunqi Gao , Yandong Lv
{"title":"Visualization of the microscopic mechanism of slurry infiltration and filter cake formation for slurry shield tunneling in saturated sand: A microfluidic chip experiment","authors":"Yanbo Chen ,&nbsp;Hao Liu ,&nbsp;Yufeng Gao ,&nbsp;Xiaowei Ye ,&nbsp;Haowen Guo ,&nbsp;Yunqi Gao ,&nbsp;Yandong Lv","doi":"10.1016/j.trgeo.2025.101529","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the effects of slurry concentration and pressure on the micro-mechanisms of the slurry infiltration and filter cake formation through microfluidic chip experiments. The formation process of the clogging skeletons and filter cake was revealed. The formation time of clogging skeletons, particle deposition area, average clogging depth and clogging frequency were measured to evaluate the effects of slurry concentration and pressure. The results show that the bentonite particles can clog the pores through the effects of sieving and bridging, thereby forming weakly-permeable clogging skeletons. Subsequent particles deposit on the clogging skeletons and the filter cake begins to form. Higher slurry concentration can accelerate the clogging skeleton formation and enhances its stability. Increasing the concentration from 30 g/l to 60 g/l can increase the frequency of bridging-induced clogging by 2.66 %, leading to a 26 % decrease in the average clogging depth. The shallower clogging depth facilitates a larger external deposition area, significantly reducing the filter cake permeability. Higher slurry pressure can also accelerate the clogging skeleton formation and compacts the external deposited particles. Increasing the initial pressure from 30 kPa to 50 kPa can decrease the frequency of bridging-induced clogging by 2.41 % and increase the average clogging depth by 13 %, which induces the larger internal deposition area and lower filter cake permeability. Considering the effects of the cutter tool penetration depth and rotation frequency on the filter cake, it is recommended the concentration and excess pressure of the slurry used in the engineering applications should not be less than 60 g/l and 50 kPa, respectively.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"51 ","pages":"Article 101529"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225000480","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the effects of slurry concentration and pressure on the micro-mechanisms of the slurry infiltration and filter cake formation through microfluidic chip experiments. The formation process of the clogging skeletons and filter cake was revealed. The formation time of clogging skeletons, particle deposition area, average clogging depth and clogging frequency were measured to evaluate the effects of slurry concentration and pressure. The results show that the bentonite particles can clog the pores through the effects of sieving and bridging, thereby forming weakly-permeable clogging skeletons. Subsequent particles deposit on the clogging skeletons and the filter cake begins to form. Higher slurry concentration can accelerate the clogging skeleton formation and enhances its stability. Increasing the concentration from 30 g/l to 60 g/l can increase the frequency of bridging-induced clogging by 2.66 %, leading to a 26 % decrease in the average clogging depth. The shallower clogging depth facilitates a larger external deposition area, significantly reducing the filter cake permeability. Higher slurry pressure can also accelerate the clogging skeleton formation and compacts the external deposited particles. Increasing the initial pressure from 30 kPa to 50 kPa can decrease the frequency of bridging-induced clogging by 2.41 % and increase the average clogging depth by 13 %, which induces the larger internal deposition area and lower filter cake permeability. Considering the effects of the cutter tool penetration depth and rotation frequency on the filter cake, it is recommended the concentration and excess pressure of the slurry used in the engineering applications should not be less than 60 g/l and 50 kPa, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
期刊最新文献
Spring load restriction methods: A comprehensive review Visualization of the microscopic mechanism of slurry infiltration and filter cake formation for slurry shield tunneling in saturated sand: A microfluidic chip experiment Model tests study of multi-layer geosynthetic-reinforced pile-supported embankments and evaluation of analytical design models Multiphysics simulation of frost heave in unsaturated road systems under covering effect Effect of installation damage on the behavior of a polypropylene geogrid in an aggressive environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1