Damage Localization at Steel–Concrete Interface Using Nonlinear Ultrasonic Time Reversal Method

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Structural Control & Health Monitoring Pub Date : 2025-02-23 DOI:10.1155/stc/8868516
Yi Wen, Linsheng Huo, Nan Zhao, Hongnan Li
{"title":"Damage Localization at Steel–Concrete Interface Using Nonlinear Ultrasonic Time Reversal Method","authors":"Yi Wen,&nbsp;Linsheng Huo,&nbsp;Nan Zhao,&nbsp;Hongnan Li","doi":"10.1155/stc/8868516","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Steel–concrete composite structures are prevalent in civil engineering, however, due to the temperature variation and fatigue loading, the interface between the steel tube and the core concrete is susceptible to various types of damage, including cracking, delamination, and debonding. Accurate localization of interface damage is crucial to ensure the safety of steel–concrete composite structures. The time-reversal (TR) method is commonly used in nondestructive testing for localizing structural linear damage due to its temporal and spatial focusing characteristics. However, the damage in the steel-concrete interface exhibits complex mechanical behavior and results in localization errors with the traditional TR method. To address this challenge, combined with the advantages of the VAM method, this paper proposes a nonlinear ultrasonic TR method to improve the accuracy of the TR method. This novel approach involves simultaneously exciting low-frequency (LF) and high-frequency (HF) signals using only one lead zirconate titanate (PZT) transducer, extracting the first-order modulation sideband signal, reversing and reemitting this signal, and utilizing the focused signal image to determine the location of damage at the interface. To validate the effectiveness of the proposed method, experiments were conducted on a concrete-filled steel tube with prefabricated interface damage to check its localization accuracy. The results clearly demonstrate an improvement in localization accuracy when using the proposed method compared to the conventional TR method. Specifically, the relative error in the coordinates for damage determined by the conventional TR method was significantly reduced from (25.89%, 18.82%) to (3.53%, 7.06%) with the proposed method. These findings underscore the superior performance of the proposed nonlinear ultrasonic TR method in localizing damage at the steel-concrete interface.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8868516","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/8868516","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Steel–concrete composite structures are prevalent in civil engineering, however, due to the temperature variation and fatigue loading, the interface between the steel tube and the core concrete is susceptible to various types of damage, including cracking, delamination, and debonding. Accurate localization of interface damage is crucial to ensure the safety of steel–concrete composite structures. The time-reversal (TR) method is commonly used in nondestructive testing for localizing structural linear damage due to its temporal and spatial focusing characteristics. However, the damage in the steel-concrete interface exhibits complex mechanical behavior and results in localization errors with the traditional TR method. To address this challenge, combined with the advantages of the VAM method, this paper proposes a nonlinear ultrasonic TR method to improve the accuracy of the TR method. This novel approach involves simultaneously exciting low-frequency (LF) and high-frequency (HF) signals using only one lead zirconate titanate (PZT) transducer, extracting the first-order modulation sideband signal, reversing and reemitting this signal, and utilizing the focused signal image to determine the location of damage at the interface. To validate the effectiveness of the proposed method, experiments were conducted on a concrete-filled steel tube with prefabricated interface damage to check its localization accuracy. The results clearly demonstrate an improvement in localization accuracy when using the proposed method compared to the conventional TR method. Specifically, the relative error in the coordinates for damage determined by the conventional TR method was significantly reduced from (25.89%, 18.82%) to (3.53%, 7.06%) with the proposed method. These findings underscore the superior performance of the proposed nonlinear ultrasonic TR method in localizing damage at the steel-concrete interface.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
期刊最新文献
Imaging-Based Instance Segmentation of Pavement Cracks Using an Improved YOLOv8 Network High-Cycle Fatigue Assessment Method for Composite Bridges Based on Predamage Mechanics Model Explainable Artificial Intelligence–Based Search Space Reduction for Optimal Sensor Placement in the Pipeline Systems of Naval Ships Development of an Advanced Online Adaptive FOPID Controller Using the Interval Type 2 Fuzzy Neural Network Optimized With the Levenberg–Marquardt Algorithm for a 20-Story Benchmark Building Stochastic Static Model Updating of Bridge Using Homotopy Method and Pre-Estimated Solution Domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1