Machine learning detection of heteroresistance in Escherichia coli.

IF 9.7 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL EBioMedicine Pub Date : 2025-03-01 Epub Date: 2025-02-21 DOI:10.1016/j.ebiom.2025.105618
Andrei Guliaev, Karin Hjort, Michele Rossi, Sofia Jonsson, Hervé Nicoloff, Lionel Guy, Dan I Andersson
{"title":"Machine learning detection of heteroresistance in Escherichia coli.","authors":"Andrei Guliaev, Karin Hjort, Michele Rossi, Sofia Jonsson, Hervé Nicoloff, Lionel Guy, Dan I Andersson","doi":"10.1016/j.ebiom.2025.105618","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Heteroresistance (HR) is a significant type of antibiotic resistance observed for several bacterial species and antibiotic classes where a susceptible main population contains small subpopulations of resistant cells. Mathematical models, animal experiments and clinical studies associate HR with treatment failure. Currently used susceptibility tests do not detect heteroresistance reliably, which can result in misclassification of heteroresistant isolates as susceptible which might lead to treatment failure. Here we examined if whole genome sequence (WGS) data and machine learning (ML) can be used to detect bacterial HR.</p><p><strong>Methods: </strong>We classified 467 Escherichia coli clinical isolates as HR or non-HR to the often used β-lactam/inhibitor combination piperacillin-tazobactam using pre-screening and Population Analysis Profiling tests. We sequenced the isolates, assembled the whole genomes and created a set of predictors based on current knowledge of HR mechanisms. Then we trained several machine learning models on 80% of this data set aiming to detect HR isolates. We compared performance of the best ML models on the remaining 20% of the data set with a baseline model based solely on the presence of β-lactamase genes. Furthermore, we sequenced the resistant sub-populations in order to analyse the genetic mechanisms underlying HR.</p><p><strong>Findings: </strong>The best ML model achieved 100% sensitivity and 84.6% specificity, outperforming the baseline model. The strongest predictors of HR were the total number of β-lactamase genes, β-lactamase gene variants and presence of IS elements flanking them. Genetic analysis of HR strains confirmed that HR is caused by an increased copy number of resistance genes via gene amplification or plasmid copy number increase. This aligns with the ML model's findings, reinforcing the hypothesis that this mechanism underlies HR in Gram-negative bacteria.</p><p><strong>Interpretation: </strong>We demonstrate that a combination of WGS and ML can identify HR in bacteria with perfect sensitivity and high specificity. This improved detection would allow for better-informed treatment decisions and potentially reduce the occurrence of treatment failures associated with HR.</p><p><strong>Funding: </strong>Funding provided to DIA from the Swedish Research Council (2021-02091) and NIH (1U19AI158080-01).</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"113 ","pages":"105618"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2025.105618","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Heteroresistance (HR) is a significant type of antibiotic resistance observed for several bacterial species and antibiotic classes where a susceptible main population contains small subpopulations of resistant cells. Mathematical models, animal experiments and clinical studies associate HR with treatment failure. Currently used susceptibility tests do not detect heteroresistance reliably, which can result in misclassification of heteroresistant isolates as susceptible which might lead to treatment failure. Here we examined if whole genome sequence (WGS) data and machine learning (ML) can be used to detect bacterial HR.

Methods: We classified 467 Escherichia coli clinical isolates as HR or non-HR to the often used β-lactam/inhibitor combination piperacillin-tazobactam using pre-screening and Population Analysis Profiling tests. We sequenced the isolates, assembled the whole genomes and created a set of predictors based on current knowledge of HR mechanisms. Then we trained several machine learning models on 80% of this data set aiming to detect HR isolates. We compared performance of the best ML models on the remaining 20% of the data set with a baseline model based solely on the presence of β-lactamase genes. Furthermore, we sequenced the resistant sub-populations in order to analyse the genetic mechanisms underlying HR.

Findings: The best ML model achieved 100% sensitivity and 84.6% specificity, outperforming the baseline model. The strongest predictors of HR were the total number of β-lactamase genes, β-lactamase gene variants and presence of IS elements flanking them. Genetic analysis of HR strains confirmed that HR is caused by an increased copy number of resistance genes via gene amplification or plasmid copy number increase. This aligns with the ML model's findings, reinforcing the hypothesis that this mechanism underlies HR in Gram-negative bacteria.

Interpretation: We demonstrate that a combination of WGS and ML can identify HR in bacteria with perfect sensitivity and high specificity. This improved detection would allow for better-informed treatment decisions and potentially reduce the occurrence of treatment failures associated with HR.

Funding: Funding provided to DIA from the Swedish Research Council (2021-02091) and NIH (1U19AI158080-01).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
背景:异抗性(HR)是抗生素耐药性的一种重要类型,在一些细菌种类和抗生素类别中都能观察到,在易感的主要群体中含有少量的耐药细胞亚群。数学模型、动物实验和临床研究表明,HR 与治疗失败有关。目前使用的药敏试验不能可靠地检测出异抗性,这可能导致将异抗性分离株误判为易感,从而导致治疗失败。在此,我们研究了全基因组序列(WGS)数据和机器学习(ML)是否可用于检测细菌的异抗性:我们使用预筛选和群体分析测试将 467 例临床大肠埃希菌分离株分为对常用的 β-内酰胺/抑制剂组合哌拉西林-他唑巴坦具有 HR 或非 HR 的细菌。我们对分离株进行了测序,组装了全基因组,并根据目前对 HR 机制的了解创建了一组预测因子。然后,我们在该数据集的 80% 上训练了几个机器学习模型,旨在检测 HR 分离物。在剩余的 20% 数据集上,我们将最佳 ML 模型的性能与仅基于 β 内酰胺酶基因存在的基线模型进行了比较。此外,我们还对耐药亚群进行了测序,以分析HR的遗传机制:最佳 ML 模型的灵敏度为 100%,特异性为 84.6%,优于基线模型。对HR预测最强的因素是β-内酰胺酶基因总数、β-内酰胺酶基因变异和基因侧翼IS元件的存在。对 HR 菌株的遗传分析证实,HR 是通过基因扩增或质粒拷贝数增加导致抗性基因拷贝数增加引起的。这与 ML 模型的发现相吻合,强化了这一机制是革兰氏阴性菌中 HR 的基础的假设:我们证明,WGS 与 ML 的结合能以极高的灵敏度和特异性识别细菌中的 HR。这种检测能力的提高将有助于做出更明智的治疗决定,并有可能减少与 HR 相关的治疗失败的发生:瑞典研究理事会(2021-02091)和美国国立卫生研究院(1U19AI158080-01)为 DIA 提供资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Sediment-associated microplastics in Chilika lake, India: Highlighting their prevalence, polymer types, possible sources, and ecological risks
IF 9.8 1区 环境科学与生态学Science of the Total EnvironmentPub Date : 2024-01-04 DOI: 10.1016/j.scitotenv.2023.169707
Mohit Kumar , Dinesh Kumar Naik , Dusmant Maharana , Moumita Das , Ekta Jaiswal , Amiya Shankar Naik , Neha Kumari
Research progress of microplastics in soil-plant system: Ecological effects and potential risks.
IF 9.8 2区 医学ACS Biomaterials Science & EngineeringPub Date : 2022-03-15 DOI: 10.1016/j.scitotenv.2021.151487
Danlian Huang, Xinya Wang, Lingshi Yin, Sha Chen, Jiaxi Tao, Wei Zhou, Haojie Chen, Gaoxia Zhang, Ruihao Xiao
来源期刊
EBioMedicine
EBioMedicine Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍: eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.
期刊最新文献
A live attenuated SARS-CoV-2 vaccine constructed by dual inactivation of NSP16 and ORF3a. Deep learning informed multimodal fusion of radiology and pathology to predict outcomes in HPV-associated oropharyngeal squamous cell carcinoma. Reporting of molecular test results from cell-free DNA analyses: expert consensus recommendations from the 2023 European Liquid Biopsy Society ctDNA Workshop. AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines. Chromatin landscape in paired human visceral and subcutaneous adipose tissue and its impact on clinical variables in obesity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1