{"title":"Effect of Aquafaba and Almond Milk on the Quality of Gluten-Free Vegan Pancakes: Nutritional and Sensory Evaluation.","authors":"Gozdenur Tan, Gulcan Ozkan, Ebru Aydin","doi":"10.1007/s11130-025-01311-0","DOIUrl":null,"url":null,"abstract":"<p><p>The rising prevalence of celiac disease, gluten sensitivity, and vegan dietary preferences has increased the demand for gluten-free and plant-based foods. This study investigates the potential of aquafaba, a chickpea cooking by-product, as an egg substitute, combined with almond, coconut, and buckwheat flours to develop gluten-free vegan pancake formulations. Aquafaba was optimized for foaming and emulsifying properties under specific conditions (30 min cooking at 70-80 kPa, 110-115 °C, with a 1:1 chickpea-to-water ratio). Four pancake formulations, including gluten containing pancake (GCP), gluten-containing vegan (GCVP) gluten-free pancake (GFP) and gluten-free vegan pancake (GFVP) were evaluated for physicochemical, nutritional, sensory, and textural properties. The GFVP formulation, containing 10.5% almond, 4% coconut, and 15% buckwheat flours, exhibited 14.38% fat, 8.8% protein, 4.01% ash, and 5.29 g/100 g dietary fiber. These values were significantly higher than GCVP, which had 0.24% fat, 7.75% protein, 2.39% ash, and 0.72 g/100 g dietary fiber. Texture analysis showed that gluten-containing pancakes had superior cohesiveness (0.75) and springiness (0.85), while GFVP demonstrated softer properties with cohesiveness at 0.55 and hardness at 2.7 N. Sensory evaluation revealed high consumer acceptability for GFVP, with competitive scores for flavor and overall preference. Using aquafaba and alternative flours allowed the development of gluten-free, vegan, and sugar-free pancakes with desirable nutritional and sensory attributes. These results highlight aquafaba's potential in creating sustainable, functional foods tailored to diverse dietary needs. The findings contribute to the advancement of functional, health-focused food development.</p>","PeriodicalId":20092,"journal":{"name":"Plant Foods for Human Nutrition","volume":"80 1","pages":"72"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Foods for Human Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11130-025-01311-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The rising prevalence of celiac disease, gluten sensitivity, and vegan dietary preferences has increased the demand for gluten-free and plant-based foods. This study investigates the potential of aquafaba, a chickpea cooking by-product, as an egg substitute, combined with almond, coconut, and buckwheat flours to develop gluten-free vegan pancake formulations. Aquafaba was optimized for foaming and emulsifying properties under specific conditions (30 min cooking at 70-80 kPa, 110-115 °C, with a 1:1 chickpea-to-water ratio). Four pancake formulations, including gluten containing pancake (GCP), gluten-containing vegan (GCVP) gluten-free pancake (GFP) and gluten-free vegan pancake (GFVP) were evaluated for physicochemical, nutritional, sensory, and textural properties. The GFVP formulation, containing 10.5% almond, 4% coconut, and 15% buckwheat flours, exhibited 14.38% fat, 8.8% protein, 4.01% ash, and 5.29 g/100 g dietary fiber. These values were significantly higher than GCVP, which had 0.24% fat, 7.75% protein, 2.39% ash, and 0.72 g/100 g dietary fiber. Texture analysis showed that gluten-containing pancakes had superior cohesiveness (0.75) and springiness (0.85), while GFVP demonstrated softer properties with cohesiveness at 0.55 and hardness at 2.7 N. Sensory evaluation revealed high consumer acceptability for GFVP, with competitive scores for flavor and overall preference. Using aquafaba and alternative flours allowed the development of gluten-free, vegan, and sugar-free pancakes with desirable nutritional and sensory attributes. These results highlight aquafaba's potential in creating sustainable, functional foods tailored to diverse dietary needs. The findings contribute to the advancement of functional, health-focused food development.
期刊介绍:
Plant Foods for Human Nutrition (previously Qualitas Plantarum) is an international journal that publishes reports of original research and critical reviews concerned with the improvement and evaluation of the nutritional quality of plant foods for humans, as they are influenced by:
- Biotechnology (all fields, including molecular biology and genetic engineering)
- Food science and technology
- Functional, nutraceutical or pharma foods
- Other nutrients and non-nutrients inherent in plant foods