{"title":"Noodles Elaborated with Wheat and Bean Cotyledon Flours Improve Dyslipidemia and Liver Function in Streptozotocin-Induced Diabetic Rats.","authors":"Mayra Denise Herrera, Raquel Karina Cruz-Bravo, Luis Roberto Reveles-Torres, Jesús Adrián López, Megan Montserrat Torres-Aguilar, Mayra Judith García-Robles, Claudia Araceli Reyes-Estrada, Saul Fraire-Velazquez","doi":"10.1007/s11130-025-01333-8","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes (T2D) has been intrinsically linked to dyslipidemia. The intake of common beans (Phaseolus vulgaris) is recommended to lower the risk of developing this disease; however, despite its beneficial contribution to health, its value chain has been weakened due to the lack of competitiveness in the market. The aim of this work was to evaluate the capacity of black bean cotyledon flour noodles to modulate lipid profile, atherosclerosis risk and hepatic enzymes levels using diabetic rats. T2D was induced with streptozotocin (30 mg/kg) after a five-week intake of a high fat diet. Metformin-, wheat noodles-, and bean noodles-treated groups were evaluated. During treatment, bean noodles lowered blood cholesterol. After sacrifice, its intake during four months also improved triglycerides and very low density lipoprotein, further related to in vitro inhibition of lipase activity. Moreover, bean noodles-fed rats exhibit decrease hepatic enzymes levels. Results suggest that intake of bean noodles prevent dyslipidemia and improve liver function. Based on the current results, further clinical trials are highly recommended to offer a novel functional food alternative to diabetic patients, and healthy-oriented human consumers.</p>","PeriodicalId":20092,"journal":{"name":"Plant Foods for Human Nutrition","volume":"80 2","pages":"96"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Foods for Human Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11130-025-01333-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 diabetes (T2D) has been intrinsically linked to dyslipidemia. The intake of common beans (Phaseolus vulgaris) is recommended to lower the risk of developing this disease; however, despite its beneficial contribution to health, its value chain has been weakened due to the lack of competitiveness in the market. The aim of this work was to evaluate the capacity of black bean cotyledon flour noodles to modulate lipid profile, atherosclerosis risk and hepatic enzymes levels using diabetic rats. T2D was induced with streptozotocin (30 mg/kg) after a five-week intake of a high fat diet. Metformin-, wheat noodles-, and bean noodles-treated groups were evaluated. During treatment, bean noodles lowered blood cholesterol. After sacrifice, its intake during four months also improved triglycerides and very low density lipoprotein, further related to in vitro inhibition of lipase activity. Moreover, bean noodles-fed rats exhibit decrease hepatic enzymes levels. Results suggest that intake of bean noodles prevent dyslipidemia and improve liver function. Based on the current results, further clinical trials are highly recommended to offer a novel functional food alternative to diabetic patients, and healthy-oriented human consumers.
期刊介绍:
Plant Foods for Human Nutrition (previously Qualitas Plantarum) is an international journal that publishes reports of original research and critical reviews concerned with the improvement and evaluation of the nutritional quality of plant foods for humans, as they are influenced by:
- Biotechnology (all fields, including molecular biology and genetic engineering)
- Food science and technology
- Functional, nutraceutical or pharma foods
- Other nutrients and non-nutrients inherent in plant foods