Numerical simulation of tokamak plasma equilibrium evolution

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computational Physics Pub Date : 2025-02-14 DOI:10.1016/j.jcp.2025.113849
G. Gros , B. Faugeras , C. Boulbe , J.-F. Artaud , R. Nouailletas , F. Rapetti
{"title":"Numerical simulation of tokamak plasma equilibrium evolution","authors":"G. Gros ,&nbsp;B. Faugeras ,&nbsp;C. Boulbe ,&nbsp;J.-F. Artaud ,&nbsp;R. Nouailletas ,&nbsp;F. Rapetti","doi":"10.1016/j.jcp.2025.113849","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the numerical methods recently developed in order to simulate the time evolution of a tokamak plasma equilibrium at the resistive diffusion time scale. Starting from the method proposed by Heumann in 2021 for the coupling of magnetic equilibrium and current diffusion, we introduce a new space discretization for the poloidal flux using coupled <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> finite elements. This, together with the use of cubic spline functions to represent the poloidal current function in the resistive diffusion equation, enables to restrain numerical oscillations which can occur with the original method. In order to compute consistently the plasma resistivity and the non-inductive bootstrap current terms needed in the resistive diffusion equation we add to the model an evolution equation for electron temperature in the plasma. It is also used to evolve the pressure term in the simulation. These numerical methods are implemented in the plasma equilibrium code NICE. A free plasma displacement is simulated and comparison with experimental results from the WEST tokamak are used to validate the simulation. The code is also coupled to a magnetic feedback controller making it possible to simulate a prescribed plasma scenario. The results for an X-point formation scenario in the WEST tokamak are presented as an illustration of the efficiency of the developed numerical methods.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"529 ","pages":"Article 113849"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125001329","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the numerical methods recently developed in order to simulate the time evolution of a tokamak plasma equilibrium at the resistive diffusion time scale. Starting from the method proposed by Heumann in 2021 for the coupling of magnetic equilibrium and current diffusion, we introduce a new space discretization for the poloidal flux using coupled C0 and C1 finite elements. This, together with the use of cubic spline functions to represent the poloidal current function in the resistive diffusion equation, enables to restrain numerical oscillations which can occur with the original method. In order to compute consistently the plasma resistivity and the non-inductive bootstrap current terms needed in the resistive diffusion equation we add to the model an evolution equation for electron temperature in the plasma. It is also used to evolve the pressure term in the simulation. These numerical methods are implemented in the plasma equilibrium code NICE. A free plasma displacement is simulated and comparison with experimental results from the WEST tokamak are used to validate the simulation. The code is also coupled to a magnetic feedback controller making it possible to simulate a prescribed plasma scenario. The results for an X-point formation scenario in the WEST tokamak are presented as an illustration of the efficiency of the developed numerical methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
期刊最新文献
Quadratic discontinuous finite volume element schemes for Stokes-Darcy problems Mathematical model and numerical discretization for the simulation of two-material two-temperature compressible flows Logarithmic mean approximation in improving entropy conservation in KEEP scheme with pressure equilibrium preservation property for compressible flows Editorial Board Tensor-train WENO scheme for compressible flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1