Tensor-train WENO scheme for compressible flows

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computational Physics Pub Date : 2025-02-26 DOI:10.1016/j.jcp.2025.113891
M. Engin Danis, Duc Truong, Ismael Boureima, Oleg Korobkin, Kim Ø. Rasmussen, Boian S. Alexandrov
{"title":"Tensor-train WENO scheme for compressible flows","authors":"M. Engin Danis,&nbsp;Duc Truong,&nbsp;Ismael Boureima,&nbsp;Oleg Korobkin,&nbsp;Kim Ø. Rasmussen,&nbsp;Boian S. Alexandrov","doi":"10.1016/j.jcp.2025.113891","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we introduce a tensor-train (TT) finite difference WENO method for solving compressible Euler equations. In a step-by-step manner, the tensorization of the governing equations is demonstrated. We also introduce <em>LF-cross</em> and <em>WENO-cross</em> methods to compute numerical fluxes and the WENO reconstruction using the cross interpolation technique. A tensor-train approach is developed for boundary condition types commonly encountered in Computational Fluid Dynamics (CFD). The performance of the proposed WENO-TT solver is investigated in a rich set of numerical experiments. We demonstrate that the WENO-TT method achieves the theoretical <span><math><msup><mrow><mtext>5</mtext></mrow><mrow><mtext>th</mtext></mrow></msup></math></span>-order accuracy of the classical WENO scheme in smooth problems while successfully capturing complicated shock structures. In an effort to avoid the growth of TT ranks, we propose a dynamic method to estimate the TT approximation error that governs the ranks and overall truncation error of the WENO-TT scheme. Finally, we show that the traditional WENO scheme can be accelerated up to 1000 times in the TT format, and the memory requirements can be significantly decreased for low-rank problems, demonstrating the potential of tensor-train approach for future CFD application. This paper is the first study that develops a finite difference WENO scheme using the tensor-train approach for compressible flows. It is also the first comprehensive work that provides a detailed perspective into the relationship between rank, truncation error, and the TT approximation error for compressible WENO solvers.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"529 ","pages":"Article 113891"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125001743","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce a tensor-train (TT) finite difference WENO method for solving compressible Euler equations. In a step-by-step manner, the tensorization of the governing equations is demonstrated. We also introduce LF-cross and WENO-cross methods to compute numerical fluxes and the WENO reconstruction using the cross interpolation technique. A tensor-train approach is developed for boundary condition types commonly encountered in Computational Fluid Dynamics (CFD). The performance of the proposed WENO-TT solver is investigated in a rich set of numerical experiments. We demonstrate that the WENO-TT method achieves the theoretical 5th-order accuracy of the classical WENO scheme in smooth problems while successfully capturing complicated shock structures. In an effort to avoid the growth of TT ranks, we propose a dynamic method to estimate the TT approximation error that governs the ranks and overall truncation error of the WENO-TT scheme. Finally, we show that the traditional WENO scheme can be accelerated up to 1000 times in the TT format, and the memory requirements can be significantly decreased for low-rank problems, demonstrating the potential of tensor-train approach for future CFD application. This paper is the first study that develops a finite difference WENO scheme using the tensor-train approach for compressible flows. It is also the first comprehensive work that provides a detailed perspective into the relationship between rank, truncation error, and the TT approximation error for compressible WENO solvers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
期刊最新文献
Quadratic discontinuous finite volume element schemes for Stokes-Darcy problems Mathematical model and numerical discretization for the simulation of two-material two-temperature compressible flows Logarithmic mean approximation in improving entropy conservation in KEEP scheme with pressure equilibrium preservation property for compressible flows Editorial Board Tensor-train WENO scheme for compressible flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1