A life cycle thinking-based environmental risk framework for screening sustainable feedstocks in early-stage bioeconomy projects

IF 12.4 Q1 ENVIRONMENTAL SCIENCES Resources Environment and Sustainability Pub Date : 2025-02-20 DOI:10.1016/j.resenv.2025.100201
George Bishop , Carmen Girón-Domínguez , James Gaffey , Maeve Henchion , Réamonn Fealy , Jesko Zimmermann , Wriju Kargupta , David Styles
{"title":"A life cycle thinking-based environmental risk framework for screening sustainable feedstocks in early-stage bioeconomy projects","authors":"George Bishop ,&nbsp;Carmen Girón-Domínguez ,&nbsp;James Gaffey ,&nbsp;Maeve Henchion ,&nbsp;Réamonn Fealy ,&nbsp;Jesko Zimmermann ,&nbsp;Wriju Kargupta ,&nbsp;David Styles","doi":"10.1016/j.resenv.2025.100201","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the environmental impacts of bio-based feedstock production is essential for sustainable bioeconomy development. Consequential life cycle assessment (LCA) evaluates environmental sustainability, often identifying “hidden” impacts incurred through market displacements. However, it is often impractical to screen multiple bioeconomy feedstocks and value chains using full consequential LCA early in project conceptualisation, owing to high requirements in terms of time, data, and expertise. As a result, critical environmental risks may not be discovered until too late in project development to redirect investment towards more sustainable options. This paper introduces the Bio-based feedstock Environmental Risk Assessment (Bio-ERA) Framework, designed to support early screening of potential upstream environmental risks associated with increased demand for bio-based feedstocks. The Bio-ERA Framework comprises a decision tree that systematically guides stakeholders through consequential life cycle thinking, elucidating sometimes hidden (indirect) pathways of impact among feedstock sourcing decisions. Seven important environmental aspects are addressed: Finite Resource Inputs, Greenhouse Gas (GHG) Emissions, Air Quality, Water Quality, Ecosystem Diversity, Terrestrial Carbon Storage, and Indirect Land Use Change. Criteria are proposed to structure evaluation of (i) probability and (ii) severity of environmental impact, in relation to four categories of feedstock: primary (determining product), high-value by-product, low-value by-product, and waste. Example applications demonstrate how the framework can generate an environmental risk profile for specific feedstocks sourced in specific contexts. Bio-ERA does not avoid the need for detailed LCA evaluation of full bioeconomy value chains, but promotes deeper interrogation and awareness of potential environmental risks associated with feedstock sourcing, in a manner that is accessible to all stakeholders. This could support <u>earlier</u> screening of strategic investment decisions necessary to develop a sustainable bioeconomy.</div></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"20 ","pages":"Article 100201"},"PeriodicalIF":12.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Environment and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666916125000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the environmental impacts of bio-based feedstock production is essential for sustainable bioeconomy development. Consequential life cycle assessment (LCA) evaluates environmental sustainability, often identifying “hidden” impacts incurred through market displacements. However, it is often impractical to screen multiple bioeconomy feedstocks and value chains using full consequential LCA early in project conceptualisation, owing to high requirements in terms of time, data, and expertise. As a result, critical environmental risks may not be discovered until too late in project development to redirect investment towards more sustainable options. This paper introduces the Bio-based feedstock Environmental Risk Assessment (Bio-ERA) Framework, designed to support early screening of potential upstream environmental risks associated with increased demand for bio-based feedstocks. The Bio-ERA Framework comprises a decision tree that systematically guides stakeholders through consequential life cycle thinking, elucidating sometimes hidden (indirect) pathways of impact among feedstock sourcing decisions. Seven important environmental aspects are addressed: Finite Resource Inputs, Greenhouse Gas (GHG) Emissions, Air Quality, Water Quality, Ecosystem Diversity, Terrestrial Carbon Storage, and Indirect Land Use Change. Criteria are proposed to structure evaluation of (i) probability and (ii) severity of environmental impact, in relation to four categories of feedstock: primary (determining product), high-value by-product, low-value by-product, and waste. Example applications demonstrate how the framework can generate an environmental risk profile for specific feedstocks sourced in specific contexts. Bio-ERA does not avoid the need for detailed LCA evaluation of full bioeconomy value chains, but promotes deeper interrogation and awareness of potential environmental risks associated with feedstock sourcing, in a manner that is accessible to all stakeholders. This could support earlier screening of strategic investment decisions necessary to develop a sustainable bioeconomy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Resources Environment and Sustainability
Resources Environment and Sustainability Environmental Science-Environmental Science (miscellaneous)
CiteScore
15.10
自引率
0.00%
发文量
41
审稿时长
33 days
期刊最新文献
Evaluating the spatiotemporal dynamics and structural resilience of the global titanium industrial chain: Insights from trade network analysis Fighting the pollinators decline in practice – Farmers’ willingness to accept an eco-scheme for their conservation in Aragon, Spain Potential decarbonization for balancing local and non-local perishable food supply in megacities Microbial fermentation in co-ensiling forage-grain ratoon rice and maize to improve feed quality and enhance the sustainability of rice-based production systems Recent advancements in prospective life cycle assessment: Current practices, trends, and implications for future research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1