Electrochemical reduction boosted Luminol cathodic electrochemiluminescence for trace chiral recognition of alanine enantiomers

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioelectrochemistry Pub Date : 2025-02-19 DOI:10.1016/j.bioelechem.2025.108945
Tingting Tian , Lixia Chen , Taiguang Li , Xiang Wang , Sen Yang , Huiqun Wang , Yujie Jiang , Xin Yao , Hong Zhao , Dengchao Wang , Xiangjun Li
{"title":"Electrochemical reduction boosted Luminol cathodic electrochemiluminescence for trace chiral recognition of alanine enantiomers","authors":"Tingting Tian ,&nbsp;Lixia Chen ,&nbsp;Taiguang Li ,&nbsp;Xiang Wang ,&nbsp;Sen Yang ,&nbsp;Huiqun Wang ,&nbsp;Yujie Jiang ,&nbsp;Xin Yao ,&nbsp;Hong Zhao ,&nbsp;Dengchao Wang ,&nbsp;Xiangjun Li","doi":"10.1016/j.bioelechem.2025.108945","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemiluminescence (ECL) is highly recommended in chiral recognition. ECL-based chiral sensors highly desire a sensitive sensing interface for signal conversion and absolute chiral discrimination. The ECL emission based on a luminol-dissolved O<sub>2</sub> system received much attention due to its nontoxicity and stability. However, the drawback of weak ECL emission hinders the fast signal conversion from chiral discrimination to ECL response. Herein, the amplification strategy of ECL emission is proposed based on the electrochemical reduction enhanced O<sub>2</sub> reduction reaction (ORR). Cadmium sulfide decorated on carbon-nanotubes (CdS/CNTs) with easy synthesis, wide-pH operation, and suitable valence-conduction band position is employed. Upon cathodic scan, the electrons transfer from electrochemically reduced-CdS/CNTs to O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>, thus accelerating the generation of reactive oxide species (ROS) and furthering ECL emission. Furthermore, the chiral ECL sensing interface is well-designed by combining the chiral recognition of D-amino acid oxidase (DAAO) with the signal transduction and amplification of CdS/CNTs-enhanced ECL emission. During DAAO-catalyzed enantioselective-oxidations of alanine, the O<sub>2</sub> is converted to H<sub>2</sub>O<sub>2</sub>, which tunes the ROS generation. With synergetic regulations of ROS generation by nano-derived CdS/CNTs and bio-derived DAAO, alanine enantiomers are highly discriminated and the L-alanine is quantitatively detected with the most competitive detection limit so far (0.014 fM).</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108945"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000489","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemiluminescence (ECL) is highly recommended in chiral recognition. ECL-based chiral sensors highly desire a sensitive sensing interface for signal conversion and absolute chiral discrimination. The ECL emission based on a luminol-dissolved O2 system received much attention due to its nontoxicity and stability. However, the drawback of weak ECL emission hinders the fast signal conversion from chiral discrimination to ECL response. Herein, the amplification strategy of ECL emission is proposed based on the electrochemical reduction enhanced O2 reduction reaction (ORR). Cadmium sulfide decorated on carbon-nanotubes (CdS/CNTs) with easy synthesis, wide-pH operation, and suitable valence-conduction band position is employed. Upon cathodic scan, the electrons transfer from electrochemically reduced-CdS/CNTs to O2 and H2O2, thus accelerating the generation of reactive oxide species (ROS) and furthering ECL emission. Furthermore, the chiral ECL sensing interface is well-designed by combining the chiral recognition of D-amino acid oxidase (DAAO) with the signal transduction and amplification of CdS/CNTs-enhanced ECL emission. During DAAO-catalyzed enantioselective-oxidations of alanine, the O2 is converted to H2O2, which tunes the ROS generation. With synergetic regulations of ROS generation by nano-derived CdS/CNTs and bio-derived DAAO, alanine enantiomers are highly discriminated and the L-alanine is quantitatively detected with the most competitive detection limit so far (0.014 fM).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Effects of motor and cognitive manipulation on the dual-task costs of center of pressure displacement in children, adolescents and young adults: A cross-sectional study
IF 1.8 3区 医学Clinical BiomechanicsPub Date : 2021-04-01 DOI: 10.1016/j.clinbiomech.2021.105344
Silvia Letícia Pavão , Camila Resende Gâmbaro Lima , Nelci Adriana Cicuto Ferreira Rocha
The Effect of a Cognitive Dual Task on Gait Parameters among Healthy Young Adults with Good and Poor Sleep Quality: A Cross-Sectional Analysis
IF 3.9 3区 医学Journal of Clinical MedicinePub Date : 2024-04-27 DOI: 10.3390/jcm13092566
Jood Dalbah, Shima A. Mohammad Zadeh, Meeyoung Kim
Influence of frailty and cognitive decline on dual task performance in older adults: an analytical cross-sectional study.
IF 1.5 4区 医学Revista Latino-Americana De EnfermagemPub Date : 2025-02-17 DOI: 10.1590/1518-8345.7159.4485
Francine Golghetto Casemiro, Lucas Pelegrini Nogueira de Carvalho, Fernanda de Brito Matiello, Marcela Cristina Resende, Rosalina Aparecida Partezani Rodrigues
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
期刊最新文献
Hybridization chain reaction and CRISPR/Cas12a-integrated biosensor for precise Ago2 detection A high-sensitivity label-free electrochemical aptasensor for point-of-care measurements of low-density lipoprotein in plasma based on aptamer and MXene-CMCS-Hemin nanocomposites The unusual formaldehyde-induced activation of [NiFe]-hydrogenase: Implications from protein film electrochemistry and infrared spectroscopy Structural bioelectrochemistry of direct electron transfer-type multimeric dehydrogenases: Basic principle and rational strategies Study on effect of electroporation combining high- and low-frequency harmonics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1