Cong Fan , Jian Fan , Haofeng Chen , Shujin Lin , Danli Zhang , Jingya Song , Junyi Wang , Yan Wang , Xiao Han , Jifeng Yuan
{"title":"Switching the yeast metabolism via manipulation of sugar phosphorylation","authors":"Cong Fan , Jian Fan , Haofeng Chen , Shujin Lin , Danli Zhang , Jingya Song , Junyi Wang , Yan Wang , Xiao Han , Jifeng Yuan","doi":"10.1016/j.ymben.2025.02.008","DOIUrl":null,"url":null,"abstract":"<div><div><em>Saccharomyces cerevisiae</em> predominantly ferments sugar to ethanol, irrespective of the presence of oxygen, which is known as the Crabtree-effect. Traditional methods rely on static controls of glycolytic flux to make <em>S. cerevisiae</em> Crabtree-negative, which are not favorable for future biomanufacturing applications. Considering native metabolic pathways typically harness dynamic regulatory networks, we therefore aim to develop an alternative strategy using dynamic regulation of the yeast central metabolism to generate Crabtree-negative <em>S. cerevisiae</em>. We report that manipulating a single step at sugar phosphorylation can alter the mode of yeast metabolism with an attenuated Crabtree-effect. By implementing catabolite-regulated sugar phosphorylation, the diauxic shift in budding yeast was effectively reduced. The Crabtree-attenuated metabolism in the engineered yeast was confirmed by multidimensional characterizations such as cell morphology, the measurements of sugar utilization rate and ethanol production, and transcriptomics. In addition, we demonstrated that the Crabtree-attenuated metabolism could substantially improve the mitochondrial synthesis of short branched-chain fatty acids from amino acid catabolism, and allow the synthesis and accumulation of retinaldehyde. Taken together, we present for the first time that manipulation of sugar phosphorylation can alter the mode of yeast metabolism, and the synthetic Crabtree-attenuated yeast factory established here might serve as a non-fermentative biomanufacturing chassis.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"89 ","pages":"Pages 76-85"},"PeriodicalIF":6.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717625000230","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Saccharomyces cerevisiae predominantly ferments sugar to ethanol, irrespective of the presence of oxygen, which is known as the Crabtree-effect. Traditional methods rely on static controls of glycolytic flux to make S. cerevisiae Crabtree-negative, which are not favorable for future biomanufacturing applications. Considering native metabolic pathways typically harness dynamic regulatory networks, we therefore aim to develop an alternative strategy using dynamic regulation of the yeast central metabolism to generate Crabtree-negative S. cerevisiae. We report that manipulating a single step at sugar phosphorylation can alter the mode of yeast metabolism with an attenuated Crabtree-effect. By implementing catabolite-regulated sugar phosphorylation, the diauxic shift in budding yeast was effectively reduced. The Crabtree-attenuated metabolism in the engineered yeast was confirmed by multidimensional characterizations such as cell morphology, the measurements of sugar utilization rate and ethanol production, and transcriptomics. In addition, we demonstrated that the Crabtree-attenuated metabolism could substantially improve the mitochondrial synthesis of short branched-chain fatty acids from amino acid catabolism, and allow the synthesis and accumulation of retinaldehyde. Taken together, we present for the first time that manipulation of sugar phosphorylation can alter the mode of yeast metabolism, and the synthetic Crabtree-attenuated yeast factory established here might serve as a non-fermentative biomanufacturing chassis.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.