Production and Characterization of Copolymers Consisting of 3-Hydroxybutyrate and Increased 3-Hydroxyvalerate by β-Oxidation Weakened Halomonas.

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2025-02-21 DOI:10.1016/j.ymben.2025.02.009
Huan Wang, Yunyun Ouyang, Weinan Yang, Hongtao He, Jiangnan Chen, Yiping Yuan, Helen Park, Fuqing Wu, Fang Yang, Guo-Qiang Chen
{"title":"Production and Characterization of Copolymers Consisting of 3-Hydroxybutyrate and Increased 3-Hydroxyvalerate by β-Oxidation Weakened Halomonas.","authors":"Huan Wang, Yunyun Ouyang, Weinan Yang, Hongtao He, Jiangnan Chen, Yiping Yuan, Helen Park, Fuqing Wu, Fang Yang, Guo-Qiang Chen","doi":"10.1016/j.ymben.2025.02.009","DOIUrl":null,"url":null,"abstract":"<p><p>Polyhydroxyalkanoates (PHA) with high 3-hydroxyvalerate (3HV) monomer ratios lead to their accelerated biodegradation and improved thermal and mechanical properties. In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with a broad range of 3HV ratios were produced and characterized using the next generation industrial biotechnology (NGIB) chassis Halomonas bluephagenesis (H. bluephagenesis). Wild type H. bluephagenesis was found to produce P(3HB-co-66.31mol% 3HV) when cultured in the presence of valerate. Deletion on the functional enoyl-CoA hydratase (fadB<sub>1</sub>) increased to 93.11 mol% 3HV in the PHBV copolymers. Through tuning the glucose and valerate co-feeding, PHBV with controllable 3HV ratios were adjusted to range from 0-to-93.6 mol% in shake-flask studies. Metabolic weakening of the β-oxidation pathway paired with flux limitation to the native 3HB synthesis pathway were used to reach the highest reported 98.3 mol% 3HV by H. bluephagenesis strain G34B grown in shake flasks. H. bluephagenesis strain G34B was grown to 71.42 g/L cell dry weight (CDW) containing 74.12 wt% P(3HB-co-17.97 mol% 3HV) in 7 L fermentors. Mechanical properties of PHBV with 0, 22.81, 42.76, 73.49 and 92.17 mol% 3HV were characterized to find not linearly related to increased 3HV ratios. Engineered H. bluephagenesis has demonstrated as a platform for producing PHBV of various properties.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2025.02.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyhydroxyalkanoates (PHA) with high 3-hydroxyvalerate (3HV) monomer ratios lead to their accelerated biodegradation and improved thermal and mechanical properties. In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with a broad range of 3HV ratios were produced and characterized using the next generation industrial biotechnology (NGIB) chassis Halomonas bluephagenesis (H. bluephagenesis). Wild type H. bluephagenesis was found to produce P(3HB-co-66.31mol% 3HV) when cultured in the presence of valerate. Deletion on the functional enoyl-CoA hydratase (fadB1) increased to 93.11 mol% 3HV in the PHBV copolymers. Through tuning the glucose and valerate co-feeding, PHBV with controllable 3HV ratios were adjusted to range from 0-to-93.6 mol% in shake-flask studies. Metabolic weakening of the β-oxidation pathway paired with flux limitation to the native 3HB synthesis pathway were used to reach the highest reported 98.3 mol% 3HV by H. bluephagenesis strain G34B grown in shake flasks. H. bluephagenesis strain G34B was grown to 71.42 g/L cell dry weight (CDW) containing 74.12 wt% P(3HB-co-17.97 mol% 3HV) in 7 L fermentors. Mechanical properties of PHBV with 0, 22.81, 42.76, 73.49 and 92.17 mol% 3HV were characterized to find not linearly related to increased 3HV ratios. Engineered H. bluephagenesis has demonstrated as a platform for producing PHBV of various properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Biosynthesis of 12-aminododecanoic acid from biomass sugars. Direct mRNA-to-sgRNA Conversion Generates Design-Free Ultra-Dense CRISPRi Libraries for Systematic Phenotypic Screening. Editorial Board Switching the yeast metabolism via manipulation of sugar phosphorylation Production and Characterization of Copolymers Consisting of 3-Hydroxybutyrate and Increased 3-Hydroxyvalerate by β-Oxidation Weakened Halomonas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1