On evolution of agent behavior under limited gaming time with reinforcement learning

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2025-02-25 DOI:10.1016/j.chaos.2025.116166
Dandan Li , Qiongzi Wu , Dun Han
{"title":"On evolution of agent behavior under limited gaming time with reinforcement learning","authors":"Dandan Li ,&nbsp;Qiongzi Wu ,&nbsp;Dun Han","doi":"10.1016/j.chaos.2025.116166","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the prisoner’s dilemma (PD) evolutionary game model and reinforcement learning framework, this paper studies the impact of factors such as temptation payoff, time allocation, and others on agent behavior evolution and strategy selection under limited gaming time resources, across three different agent relationship structures. The results show that an increase in the agent’s gaming time resources and lower temptation payoffs, or the agent’s greater emphasis on long-term rewards and avoidance of excessive behavioral adjustments, all contribute to promoting cooperation between agents. Additionally, the total remaining gaming time between agents gradually increases as the game progresses, while the total gaming time between agents gradually decreases. Both will eventually reach a steady state after a sufficiently large number of game rounds. Further results indicate that an increase in temptation payoff leads to an increase in total remaining gaming time, while reducing the total gaming time between agents. Finally, the measure of heterogeneity in gaming time distribution between agents gradually increases throughout the game process. This is particularly evident when the temptation payoff is high, as the differences in gaming time allocation between agents increase, significantly enhancing the heterogeneity of gaming time among agents in the system. This study provides important theoretical support for understanding agent behavior evolution under limited gaming time resources, especially in dynamic cooperative and competitive game scenarios.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"194 ","pages":"Article 116166"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925001791","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the prisoner’s dilemma (PD) evolutionary game model and reinforcement learning framework, this paper studies the impact of factors such as temptation payoff, time allocation, and others on agent behavior evolution and strategy selection under limited gaming time resources, across three different agent relationship structures. The results show that an increase in the agent’s gaming time resources and lower temptation payoffs, or the agent’s greater emphasis on long-term rewards and avoidance of excessive behavioral adjustments, all contribute to promoting cooperation between agents. Additionally, the total remaining gaming time between agents gradually increases as the game progresses, while the total gaming time between agents gradually decreases. Both will eventually reach a steady state after a sufficiently large number of game rounds. Further results indicate that an increase in temptation payoff leads to an increase in total remaining gaming time, while reducing the total gaming time between agents. Finally, the measure of heterogeneity in gaming time distribution between agents gradually increases throughout the game process. This is particularly evident when the temptation payoff is high, as the differences in gaming time allocation between agents increase, significantly enhancing the heterogeneity of gaming time among agents in the system. This study provides important theoretical support for understanding agent behavior evolution under limited gaming time resources, especially in dynamic cooperative and competitive game scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Finding influential nodes via graph embedding and hybrid centrality in complex networks Adaptive evolution of aposematism of a prey species subject to Shepherd’s recruitment function On evolution of agent behavior under limited gaming time with reinforcement learning Transport of the obstacle lattice with topographical gradients driven by chiral active particles Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1