Evaluation of Boron Carbide powder stability under accelerated aging

IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Open Ceramics Pub Date : 2025-02-17 DOI:10.1016/j.oceram.2025.100755
Amruth Kaitheri , Johannes Ofstad , Elvia Anabela Chavez Panduro , Martin Oppegård , Sanosh Kunjalukkal Padmanabhan , Sudipto Pal , Antonio Alessandro Licciulli , Vidar Johannesen , Trygve Eidet , Kjell Wiik , Mari-Ann Einarsrud
{"title":"Evaluation of Boron Carbide powder stability under accelerated aging","authors":"Amruth Kaitheri ,&nbsp;Johannes Ofstad ,&nbsp;Elvia Anabela Chavez Panduro ,&nbsp;Martin Oppegård ,&nbsp;Sanosh Kunjalukkal Padmanabhan ,&nbsp;Sudipto Pal ,&nbsp;Antonio Alessandro Licciulli ,&nbsp;Vidar Johannesen ,&nbsp;Trygve Eidet ,&nbsp;Kjell Wiik ,&nbsp;Mari-Ann Einarsrud","doi":"10.1016/j.oceram.2025.100755","DOIUrl":null,"url":null,"abstract":"<div><div>Boron carbide (B<sub>4</sub>C) is a hard and durable ceramic used in aerospace, nuclear reactors, ballistic protection, <em>etc</em>. The stability of B<sub>4</sub>C powders at ambient conditions has been investigated using accelerated ageing by heat treatment at 400 °C in controlled atmospheres. The degree of conversion of B<sub>4</sub>C increased in the following order: Argon (no reaction), humidified argon (∼4 %), synthetic air (∼13 %) and humidified synthetic air (∼19 %). In humidified atmosphere, the reaction product was boric acid due to cooling in the presence of humidity. The high conversion in humidified synthetic air suggests that humidity accelerates the oxidation, and a reaction mechanism is proposed to explain the enhanced rate of oxidation. It is anticipated that the observed oxidation reactions are not limited to 400 °C but will also occur at ambient temperatures. This agrees with observations of reduced quality of the B<sub>4</sub>C during storage in ambient atmosphere.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"22 ","pages":"Article 100755"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539525000227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Boron carbide (B4C) is a hard and durable ceramic used in aerospace, nuclear reactors, ballistic protection, etc. The stability of B4C powders at ambient conditions has been investigated using accelerated ageing by heat treatment at 400 °C in controlled atmospheres. The degree of conversion of B4C increased in the following order: Argon (no reaction), humidified argon (∼4 %), synthetic air (∼13 %) and humidified synthetic air (∼19 %). In humidified atmosphere, the reaction product was boric acid due to cooling in the presence of humidity. The high conversion in humidified synthetic air suggests that humidity accelerates the oxidation, and a reaction mechanism is proposed to explain the enhanced rate of oxidation. It is anticipated that the observed oxidation reactions are not limited to 400 °C but will also occur at ambient temperatures. This agrees with observations of reduced quality of the B4C during storage in ambient atmosphere.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Ceramics
Open Ceramics Materials Science-Materials Chemistry
CiteScore
4.20
自引率
0.00%
发文量
102
审稿时长
67 days
期刊最新文献
Thermomechanical and thermal characterization of pressureless sintered TiB2 Preparation of ZnO@ZnS core-shell nanorod arrays with enhanced photocurrent for removal of methylene blue dyes in wastewater Evaluation of Boron Carbide powder stability under accelerated aging Direct ink writing of IR-transparent yttria ceramics Improved mechanical quality of ceramic vat photopolymerization prints by supercritical carbon dioxide extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1