{"title":"Multi-Phase-Field Method for Dynamic Fracture in Composite Materials Based on Reduced-Order-Homogenization","authors":"Nianqi Liu, Zifeng Yuan","doi":"10.1002/nme.70012","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this manuscript, we extend the quasi-static multi-phase-field method for composite materials to the dynamic case. In the dynamic multi-phase-field method, each phase of the composites has its individual phase field, and the degradation of each phase is governed by its respective phase field. The macroscopic response is then obtained by averaging and homogenization approaches through the reduced-order-homogenization (ROH) framework. Through the ROH and the <span>Francfort-Marigo</span> variational principle, we can obtain the equations that govern the motion of the composites and the evolution of each phase field. This method is capable of capturing the characteristics of dynamic fracture, such as crack branching, without the need for any additional bifurcation criterion. Moreover, it can capture dynamic fracture patterns in composite materials, including matrix cracking, fiber breakage, and delamination. The corresponding numerical algorithm that includes spatial and temporal discretization is developed. An implicit, staggered <span>Newton-Raphson</span> iterative scheme is implemented to solve the nonlinear coupled equations. Finally, this method is tested with several sets of dynamic fracture benchmarks, which demonstrates good agreement with the experiments and other numerical methods.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70012","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this manuscript, we extend the quasi-static multi-phase-field method for composite materials to the dynamic case. In the dynamic multi-phase-field method, each phase of the composites has its individual phase field, and the degradation of each phase is governed by its respective phase field. The macroscopic response is then obtained by averaging and homogenization approaches through the reduced-order-homogenization (ROH) framework. Through the ROH and the Francfort-Marigo variational principle, we can obtain the equations that govern the motion of the composites and the evolution of each phase field. This method is capable of capturing the characteristics of dynamic fracture, such as crack branching, without the need for any additional bifurcation criterion. Moreover, it can capture dynamic fracture patterns in composite materials, including matrix cracking, fiber breakage, and delamination. The corresponding numerical algorithm that includes spatial and temporal discretization is developed. An implicit, staggered Newton-Raphson iterative scheme is implemented to solve the nonlinear coupled equations. Finally, this method is tested with several sets of dynamic fracture benchmarks, which demonstrates good agreement with the experiments and other numerical methods.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.