{"title":"Cell-Free Multistep Gene Regulatory Cascades Using Eukaryotic ON-Riboswitches Responsive to <i>in Situ</i> Expressed Protein Ligands.","authors":"Atsushi Ogawa, Masahiro Fujikawa, Riku Tanimoto, Kiho Matsuno, Riko Uehara, Honami Inoue, Hajime Takahashi","doi":"10.1021/acssynbio.4c00840","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most pressing challenges in cell-free synthetic biology is to assemble well-controlled genetic circuits. However, no complex circuits have been reported in eukaryotic cell-free systems, unlike the case in bacterial ones, despite several unique advantages of the former. We here developed protein-responsive upregulating riboswitches (ON-riboswitches) that function in wheat germ extract to create multistep gene regulatory cascades. Although the initial two types of ON-riboswitches we first designed were less efficient than desired, we improved one of them by incorporating hybridization switches to successfully construct a pair of highly efficient, protein-responsive ON-riboswitches. Both upregulated expression up to 20-fold through self-cleavage by a hammerhead ribozyme (HHR) in response to the corresponding protein ligands expressed <i>in situ</i>. We then combined them with similar types of HHR-based, small-molecule-responsive ON-riboswitches regulating protein ligand expression, to create four kinds of two-step regulatory cascades. Due to the high orthogonality of all the riboswitches used, we also succeeded in regulating two-step cascades concurrently and even in creating three-step cascades. Interestingly, the switching efficiency of each multistep cascade constructed was equivalent to that of the worst step within it. Therefore, more complex cascades with additional steps could be constructed using other efficient and orthogonal, protein-responsive ON-riboswitches with minimal loss of total switching efficiency, although the reaction conditions must be optimized to prevent a reduction of expression efficiencies. Riboswitch-based cascades fashioned through our proposed strategy would aid in the construction of eukaryotic genetic circuits for programmed cell-free systems or artificial cells with functionalities surpassing those of natural cells.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00840","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most pressing challenges in cell-free synthetic biology is to assemble well-controlled genetic circuits. However, no complex circuits have been reported in eukaryotic cell-free systems, unlike the case in bacterial ones, despite several unique advantages of the former. We here developed protein-responsive upregulating riboswitches (ON-riboswitches) that function in wheat germ extract to create multistep gene regulatory cascades. Although the initial two types of ON-riboswitches we first designed were less efficient than desired, we improved one of them by incorporating hybridization switches to successfully construct a pair of highly efficient, protein-responsive ON-riboswitches. Both upregulated expression up to 20-fold through self-cleavage by a hammerhead ribozyme (HHR) in response to the corresponding protein ligands expressed in situ. We then combined them with similar types of HHR-based, small-molecule-responsive ON-riboswitches regulating protein ligand expression, to create four kinds of two-step regulatory cascades. Due to the high orthogonality of all the riboswitches used, we also succeeded in regulating two-step cascades concurrently and even in creating three-step cascades. Interestingly, the switching efficiency of each multistep cascade constructed was equivalent to that of the worst step within it. Therefore, more complex cascades with additional steps could be constructed using other efficient and orthogonal, protein-responsive ON-riboswitches with minimal loss of total switching efficiency, although the reaction conditions must be optimized to prevent a reduction of expression efficiencies. Riboswitch-based cascades fashioned through our proposed strategy would aid in the construction of eukaryotic genetic circuits for programmed cell-free systems or artificial cells with functionalities surpassing those of natural cells.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.