Feixiang Zhou, Shuo Zhang, Huifeng Zhang, Jian K Liu
{"title":"ProCeSa: Contrast-Enhanced Structure-Aware Network for Thermostability Prediction with Protein Language Models.","authors":"Feixiang Zhou, Shuo Zhang, Huifeng Zhang, Jian K Liu","doi":"10.1021/acs.jcim.4c01752","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins play a fundamental role in biology, and their thermostability is essential for their proper functionality. The precise measurement of thermostability is crucial, traditionally relying on resource-intensive experiments. Recent advances in deep learning, particularly in protein language models (PLMs), have significantly accelerated the progress in protein thermostability prediction. These models utilize various biological characteristics or deep representations generated by PLMs to represent the protein sequences. However, effectively incorporating structural information, based on the PLM embeddings, while not considering atomic protein structures, remains an open and formidable challenge. Here, we propose a novel Protein Contrast-enhanced Structure-Aware (ProCeSa) model that seamlessly integrates both sequence and structural information extracted from PLMs to enhance thermostability prediction. Our model employs a contrastive learning scheme guided by the categories of amino acid residues, allowing it to discern intricate patterns within protein sequences. Rigorous experiments conducted on publicly available data sets establish the superiority of our method over state-of-the-art approaches, excelling in both classification and regression tasks. Our results demonstrate that ProCeSa addresses the complex challenge of predicting protein thermostability by utilizing PLM-derived sequence embeddings, without requiring access to atomic structural data.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01752","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Proteins play a fundamental role in biology, and their thermostability is essential for their proper functionality. The precise measurement of thermostability is crucial, traditionally relying on resource-intensive experiments. Recent advances in deep learning, particularly in protein language models (PLMs), have significantly accelerated the progress in protein thermostability prediction. These models utilize various biological characteristics or deep representations generated by PLMs to represent the protein sequences. However, effectively incorporating structural information, based on the PLM embeddings, while not considering atomic protein structures, remains an open and formidable challenge. Here, we propose a novel Protein Contrast-enhanced Structure-Aware (ProCeSa) model that seamlessly integrates both sequence and structural information extracted from PLMs to enhance thermostability prediction. Our model employs a contrastive learning scheme guided by the categories of amino acid residues, allowing it to discern intricate patterns within protein sequences. Rigorous experiments conducted on publicly available data sets establish the superiority of our method over state-of-the-art approaches, excelling in both classification and regression tasks. Our results demonstrate that ProCeSa addresses the complex challenge of predicting protein thermostability by utilizing PLM-derived sequence embeddings, without requiring access to atomic structural data.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.