GLMCyp: A Deep Learning-Based Method for CYP450-Mediated Reaction Site Prediction.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2025-02-27 DOI:10.1021/acs.jcim.4c02051
Xuhai Huang, Jiamin Chang, Boxue Tian
{"title":"GLMCyp: A Deep Learning-Based Method for CYP450-Mediated Reaction Site Prediction.","authors":"Xuhai Huang, Jiamin Chang, Boxue Tian","doi":"10.1021/acs.jcim.4c02051","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochrome P450 enzymes (CYP450s) play crucial roles in metabolizing many drugs, and thus, local chemical structure can profoundly influence drug efficacy and toxicity. Therefore, the accurate prediction of CYP450-mediated reaction sites can increase the efficiency of drug discovery and development. Here, we present GLMCyp, a deep learning-based approach, for predicting CYP450 reaction sites on small molecules. By integrating two-dimensional (2D) molecular graph features, three-dimensional (3D) features from Uni-Mol, and relevant CYP450 protein features generated by ESM-2, GLMCyp could accurately predict bonds of metabolism (BoMs) targeted by a panel of nine human CYP450s. Incorporating protein features allowed GLMCyp application in broader CYP450 metabolism prediction tasks. Additionally, substrate molecular feature processing enhanced the accuracy and interpretability of the predictions. The model was trained on the EBoMD data set and reached an area under the receiver operating characteristic curve (ROC-AUC) of 0.926. GLMCyp also showed a relatively strong capacity for feature extraction and generalizability in validation with external data sets. The GLMCyp model and data sets are available for public use (https://github.com/lvimmind/GLMCyp-Predictor) to facilitate drug metabolism screening.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02051","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cytochrome P450 enzymes (CYP450s) play crucial roles in metabolizing many drugs, and thus, local chemical structure can profoundly influence drug efficacy and toxicity. Therefore, the accurate prediction of CYP450-mediated reaction sites can increase the efficiency of drug discovery and development. Here, we present GLMCyp, a deep learning-based approach, for predicting CYP450 reaction sites on small molecules. By integrating two-dimensional (2D) molecular graph features, three-dimensional (3D) features from Uni-Mol, and relevant CYP450 protein features generated by ESM-2, GLMCyp could accurately predict bonds of metabolism (BoMs) targeted by a panel of nine human CYP450s. Incorporating protein features allowed GLMCyp application in broader CYP450 metabolism prediction tasks. Additionally, substrate molecular feature processing enhanced the accuracy and interpretability of the predictions. The model was trained on the EBoMD data set and reached an area under the receiver operating characteristic curve (ROC-AUC) of 0.926. GLMCyp also showed a relatively strong capacity for feature extraction and generalizability in validation with external data sets. The GLMCyp model and data sets are available for public use (https://github.com/lvimmind/GLMCyp-Predictor) to facilitate drug metabolism screening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Identification of Small-Molecule Inhibitors for Enterovirus A71 IRES by Structure-Based Virtual Screening. SynTemp: Efficient Extraction of Graph-Based Reaction Rules from Large-Scale Reaction Databases. Accelerated Hydration Site Localization and Thermodynamic Profiling. Applying Molecular Dynamics Simulations to Unveil the Anisotropic Growth Mechanism of Gold Nanorods: Advances and Perspectives. GLMCyp: A Deep Learning-Based Method for CYP450-Mediated Reaction Site Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1