Mauricio Sevilla, Luis A Baptista, Kurt Kremer, Robinson Cortes-Huerto
{"title":"Density fluctuations, solvation thermodynamics, and coexistence curves in grand canonical molecular dynamics simulations.","authors":"Mauricio Sevilla, Luis A Baptista, Kurt Kremer, Robinson Cortes-Huerto","doi":"10.1063/5.0243895","DOIUrl":null,"url":null,"abstract":"<p><p>Fluid transport across nanometric channels induced by electric, pressure, and concentration gradients is ubiquitous in biological systems and fosters various applications. In this context, computer simulation setups with well-defined open-boundary equilibrium starting states are essential in understanding and assisting experimental studies. However, open-boundary computational methods are scarce and do not typically satisfy all the equilibrium conditions imposed by reality. Namely, in the absence of external gradients, (1) the system of interest (SoI) must be at thermodynamic and chemical equilibrium with an infinite reservoir of particles; (2) the fluctuations of the SoI in equilibrium should sample the grand canonical ensemble; (3) the local solvation thermodynamics, which is extremely sensitive to finite-size effects due to solvent depletion, should be correctly described. This point is particularly relevant for out-of-equilibrium systems; and (4) finally, the method should be robust enough to deal with phase transitions and coexistence conditions in the SoI. In this study, we demonstrate with prototypical liquid systems embedded into a reservoir of ideal gas particles that the adaptive resolution simulation (AdResS) method, coupled with particle insertion/deletion steps (AdResS+PI), satisfies all these requirements. Therefore, the AdResS+PI setup is suitable for performing grand canonical and stationary non-equilibrium simulations of open systems.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0243895","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fluid transport across nanometric channels induced by electric, pressure, and concentration gradients is ubiquitous in biological systems and fosters various applications. In this context, computer simulation setups with well-defined open-boundary equilibrium starting states are essential in understanding and assisting experimental studies. However, open-boundary computational methods are scarce and do not typically satisfy all the equilibrium conditions imposed by reality. Namely, in the absence of external gradients, (1) the system of interest (SoI) must be at thermodynamic and chemical equilibrium with an infinite reservoir of particles; (2) the fluctuations of the SoI in equilibrium should sample the grand canonical ensemble; (3) the local solvation thermodynamics, which is extremely sensitive to finite-size effects due to solvent depletion, should be correctly described. This point is particularly relevant for out-of-equilibrium systems; and (4) finally, the method should be robust enough to deal with phase transitions and coexistence conditions in the SoI. In this study, we demonstrate with prototypical liquid systems embedded into a reservoir of ideal gas particles that the adaptive resolution simulation (AdResS) method, coupled with particle insertion/deletion steps (AdResS+PI), satisfies all these requirements. Therefore, the AdResS+PI setup is suitable for performing grand canonical and stationary non-equilibrium simulations of open systems.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.