Data Sharing in the PRIMED Consortium: Design, implementation, and recommendations for future policymaking.

ArXiv Pub Date : 2025-02-12
Johanna L Smith, Quenna Wong, Whitney Hornsby, Matthew P Conomos, Benjamin D Heavner, Iftikhar J Kullo, Bruce M Psaty, Stephen S Rich, Bamidele Tayo, Pradeep Natarajan, Sarah C Nelson, Polygenic Risk Methods In Diverse Populations Primed Consortium Data Sharing Working Group, Polygenic Risk Methods In Diverse Populations Primed Consortium
{"title":"Data Sharing in the PRIMED Consortium: Design, implementation, and recommendations for future policymaking.","authors":"Johanna L Smith, Quenna Wong, Whitney Hornsby, Matthew P Conomos, Benjamin D Heavner, Iftikhar J Kullo, Bruce M Psaty, Stephen S Rich, Bamidele Tayo, Pradeep Natarajan, Sarah C Nelson, Polygenic Risk Methods In Diverse Populations Primed Consortium Data Sharing Working Group, Polygenic Risk Methods In Diverse Populations Primed Consortium","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Sharing diverse genomic and other biomedical datasets is critical to advance scientific discoveries and their equitable translation to improve human health. However, data sharing remains challenging in the context of legacy datasets, evolving policies, multi-institutional consortium science, and international stakeholders. The NIH-funded Polygenic Risk Methods in Diverse Populations (PRIMED) Consortium was established to improve the performance of polygenic risk estimates for a broad range of health and disease outcomes with global impacts. Improving polygenic risk score performance across genetically diverse populations requires access to large, diverse cohorts. We report on the design and implementation of data sharing policies and procedures developed in PRIMED to aggregate and analyze data from multiple, heterogeneous sources while adhering to existing data sharing policies for each integrated dataset. We describe two primary data sharing mechanisms: coordinated dbGaP applications and a Consortium Data Sharing Agreement, as well as provide alternatives when individual-level data cannot be shared within the Consortium (e.g., federated analyses). We also describe technical implementation of Consortium data sharing in the NHGRI Analysis Visualization and Informatics Lab-space (AnVIL) cloud platform, to share derived individual-level data, genomic summary results, and methods workflows with appropriate permissions. As a Consortium making secondary use of pre-existing data sources, we also discuss challenges and propose solutions for release of individual- and summary-level data products to the broader scientific community. We make recommendations for ongoing and future policymaking with the goal of informing future consortia and other research activities.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844628/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sharing diverse genomic and other biomedical datasets is critical to advance scientific discoveries and their equitable translation to improve human health. However, data sharing remains challenging in the context of legacy datasets, evolving policies, multi-institutional consortium science, and international stakeholders. The NIH-funded Polygenic Risk Methods in Diverse Populations (PRIMED) Consortium was established to improve the performance of polygenic risk estimates for a broad range of health and disease outcomes with global impacts. Improving polygenic risk score performance across genetically diverse populations requires access to large, diverse cohorts. We report on the design and implementation of data sharing policies and procedures developed in PRIMED to aggregate and analyze data from multiple, heterogeneous sources while adhering to existing data sharing policies for each integrated dataset. We describe two primary data sharing mechanisms: coordinated dbGaP applications and a Consortium Data Sharing Agreement, as well as provide alternatives when individual-level data cannot be shared within the Consortium (e.g., federated analyses). We also describe technical implementation of Consortium data sharing in the NHGRI Analysis Visualization and Informatics Lab-space (AnVIL) cloud platform, to share derived individual-level data, genomic summary results, and methods workflows with appropriate permissions. As a Consortium making secondary use of pre-existing data sources, we also discuss challenges and propose solutions for release of individual- and summary-level data products to the broader scientific community. We make recommendations for ongoing and future policymaking with the goal of informing future consortia and other research activities.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共享各种基因组和其他生物医学数据集对于推动科学发现及其公平转化以改善人类健康至关重要。然而,在遗留数据集、不断变化的政策、多机构联盟科学和国际利益相关者的背景下,数据共享仍然具有挑战性。美国国立卫生研究院(NIH)资助的多元化人群多基因风险方法(PRIMED)联盟成立的目的是提高多基因风险评估的性能,以评估具有全球影响的各种健康和疾病结果。要在不同基因的人群中提高多基因风险评分的性能,需要获得大量不同的队列。我们报告了 PRIMED 中制定的数据共享政策和程序的设计与实施情况,这些政策和程序用于汇总和分析来自多个异构来源的数据,同时遵守每个集成数据集的现有数据共享政策。我们介绍了两种主要的数据共享机制:协调的 dbGaP 应用程序和联合体数据共享协议,并提供了在联合体内无法共享单个级别数据时的替代方案(如联合分析)。我们还介绍了在 NHGRI Analysis Visualization and Informatics Lab-space (AnVIL) 云平台上实现联合体数据共享的技术,以共享衍生的个体级数据、基因组汇总结果和具有适当权限的方法工作流。作为一个二次利用已有数据源的联盟,我们还讨论了向更广泛的科学界发布个体和摘要级数据产品所面临的挑战,并提出了解决方案。我们为当前和未来的政策制定提出建议,目的是为未来的联盟和其他研究活动提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MassSpecGym: A benchmark for the discovery and identification of molecules. The shape of the brain's connections is predictive of cognitive performance: an explainable machine learning study. A Physics-Informed Deep Learning Model for MRI Brain Motion Correction. In-Silico Investigation of 3D Quantitative Angiography for Internal Carotid Aneurysms Using Biplane Imaging and 3D Vascular Geometry Constraints. Optimizing Global Genomic Surveillance for Early Detection of Emerging SARS-CoV-2 Variants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1