Identification of the associations between co-exposure to organophosphate flame retardants and thyroid dysfunction and exposure risk factors in residents of Shanghai, China
Zhiyuan Du, Donghua Chen, Xiushuai Du, Guanghua Chen, Tian Chen, Weiwei Zheng
{"title":"Identification of the associations between co-exposure to organophosphate flame retardants and thyroid dysfunction and exposure risk factors in residents of Shanghai, China","authors":"Zhiyuan Du, Donghua Chen, Xiushuai Du, Guanghua Chen, Tian Chen, Weiwei Zheng","doi":"10.1016/j.envpol.2025.125911","DOIUrl":null,"url":null,"abstract":"Toxicological studies indicate that organophosphate flame retardants (OPFRs) may cause thyroid dysfunction. However, population epidemiologic evidence is still limited and little is known about the effects of mixed exposures to OPFRs. This study included 436 community residents from Shanghai, China. We measured the levels of 9 OPFRs in 3 categories and 5 commonly used thyroid function indicators (TFIs) in serum samples from all participants. Multiple linear regression and restricted cubic spline model were used to examine the association between exposure to individual OPFRs and TFIs. Weighted quantile sum regression and Bayesian kernel-machine regression models were used to elucidate the joint impact of mixed OPFRs on thyroid function and the dose-response relationship. Machine learning combined with the SHapley Additive exPlanations algorithm identified important risk factors for exposure to OPFRs in the population. The results indicated that the residents were generally exposed to OPFRs. Exposure to either single or mixed OPFRs was significantly associated with TFI levels, particularly free thyroxine (FT4) and free triiodothyronine (FT3). Tri-n-butyl-phosphate (TBP), Tris-2-butoxy ethyl-phosphate (TBEP), and Tris-2-chloroethyl-phosphate (TCEP) were major contributors to the co-exposure effect. The dose-response relationship further revealed the trend in the impact of OPFRs on thyroid function. Education, occupation, age, body mass index, personal annual income, indoor time, and mollusk intake are noteworthy risk characteristics for population exposure to OPFRs. These findings suggest that OPFRs are environmental drivers of thyroid dysfunction in humans and provide clues for further risk management.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"7 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125911","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Toxicological studies indicate that organophosphate flame retardants (OPFRs) may cause thyroid dysfunction. However, population epidemiologic evidence is still limited and little is known about the effects of mixed exposures to OPFRs. This study included 436 community residents from Shanghai, China. We measured the levels of 9 OPFRs in 3 categories and 5 commonly used thyroid function indicators (TFIs) in serum samples from all participants. Multiple linear regression and restricted cubic spline model were used to examine the association between exposure to individual OPFRs and TFIs. Weighted quantile sum regression and Bayesian kernel-machine regression models were used to elucidate the joint impact of mixed OPFRs on thyroid function and the dose-response relationship. Machine learning combined with the SHapley Additive exPlanations algorithm identified important risk factors for exposure to OPFRs in the population. The results indicated that the residents were generally exposed to OPFRs. Exposure to either single or mixed OPFRs was significantly associated with TFI levels, particularly free thyroxine (FT4) and free triiodothyronine (FT3). Tri-n-butyl-phosphate (TBP), Tris-2-butoxy ethyl-phosphate (TBEP), and Tris-2-chloroethyl-phosphate (TCEP) were major contributors to the co-exposure effect. The dose-response relationship further revealed the trend in the impact of OPFRs on thyroid function. Education, occupation, age, body mass index, personal annual income, indoor time, and mollusk intake are noteworthy risk characteristics for population exposure to OPFRs. These findings suggest that OPFRs are environmental drivers of thyroid dysfunction in humans and provide clues for further risk management.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.