Overlooked role of transition metal impurities (cobalt and nickel) substitution in tuning pyrite to activate peroxymonosulfate for degradation of emerging pollutants

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2025-02-25 DOI:10.1016/j.seppur.2025.132280
Qingcun Gu, Xiaoya Gao, Bingheng Liang, Xuhao Liu, Jiatian Wang, Teng Guo, Wenjie Zhu, Yongming Luo
{"title":"Overlooked role of transition metal impurities (cobalt and nickel) substitution in tuning pyrite to activate peroxymonosulfate for degradation of emerging pollutants","authors":"Qingcun Gu, Xiaoya Gao, Bingheng Liang, Xuhao Liu, Jiatian Wang, Teng Guo, Wenjie Zhu, Yongming Luo","doi":"10.1016/j.seppur.2025.132280","DOIUrl":null,"url":null,"abstract":"Impurities play a crucial role in various catalytic systems. This study firstly investigated the effects of Ni and Co impurities in pyrite on peroxymonosulfate (PMS) activation to degrade emerging pollutants. The substitution of 6.30 % Ni and 5.64 % Co enhanced the catalytic activity of pyrite, with rate constants of 12 and 22 times greater than pure pyrite, respectively. Theoretical calculations revealed that impurities shifted PMS adsorption to a dual-site mode, leading to stronger adsorption energy and more electron transfer numbers than pure pyrite. The extension of oxygen–oxygen bond in PMS significantly promoted its cleavage to generate reactive oxygen species (particularly singlet oxygen of 74 times greater in 5.64 % Co-Py/PMS than that in the Py/PMS), which ensured the enhanced environment stability/adaptability and reduced pollutants toxicity within the 6.30 % Ni-Py and 5.64 % Co-Py systems. This study provides new insights into positively governing pyrite-based PMS advanced oxidation processes from the perspective of coexisting impurities.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"24 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.132280","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Impurities play a crucial role in various catalytic systems. This study firstly investigated the effects of Ni and Co impurities in pyrite on peroxymonosulfate (PMS) activation to degrade emerging pollutants. The substitution of 6.30 % Ni and 5.64 % Co enhanced the catalytic activity of pyrite, with rate constants of 12 and 22 times greater than pure pyrite, respectively. Theoretical calculations revealed that impurities shifted PMS adsorption to a dual-site mode, leading to stronger adsorption energy and more electron transfer numbers than pure pyrite. The extension of oxygen–oxygen bond in PMS significantly promoted its cleavage to generate reactive oxygen species (particularly singlet oxygen of 74 times greater in 5.64 % Co-Py/PMS than that in the Py/PMS), which ensured the enhanced environment stability/adaptability and reduced pollutants toxicity within the 6.30 % Ni-Py and 5.64 % Co-Py systems. This study provides new insights into positively governing pyrite-based PMS advanced oxidation processes from the perspective of coexisting impurities.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Editorial Board Sulfur self-doped hierarchical porous carbon materials synthesized by one-pot method for efficient adsorption of thallium(I) Enhanced water purification through the double regulation of GO/MXene membranes with sodium alginate and KOH Bromine functionalized zirconium–fumarate frameworks for enhanced xenon capture and separation Variants of the hybrid distillation/pervaporation process: Conceptual model-based optimization and environmental analysis for IPA dehydration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1