Ferrielectric Dipolar Ordering in a Donor–Acceptor Based Covalent–Organic Framework for Piezocatalytic Water Splitting

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-02-25 DOI:10.1002/adfm.202502787
Adrija Ghosh, Surabhi Menon, Sandip Biswas, Supriya Sahoo, Anupam Dey, Ramamoorthy Boomishankar, Jan K. Zaręba, Umesh V. Waghmare, Tapas Kumar Maji
{"title":"Ferrielectric Dipolar Ordering in a Donor–Acceptor Based Covalent–Organic Framework for Piezocatalytic Water Splitting","authors":"Adrija Ghosh, Surabhi Menon, Sandip Biswas, Supriya Sahoo, Anupam Dey, Ramamoorthy Boomishankar, Jan K. Zaręba, Umesh V. Waghmare, Tapas Kumar Maji","doi":"10.1002/adfm.202502787","DOIUrl":null,"url":null,"abstract":"Piezocatalysis has emerged as a promising technique for the production of green H<sub>2</sub> fuel by harvesting mechanical energy. A metal-free, highly porous covalent–organic framework (COF) as a piezocatalyst that produces H<sub>2</sub> at an ultra-high rate of 6.6 mmol g<sup>−1</sup> h<sup>−1</sup> under ultrasonication is reported. This activity originates from the electron–hole carriers generated in “nested” nearly degenerate conduction and valence bands driving ferrielectric ordering of dipoles whose coupling with soft torsional phonons facilitates absorption of energy from the mechanical stress fields. Conformationally flexible donor tris(4-aminophenyl)amine (TAPA) moiety in COF introduces soft torsional lattice modes that interact with pyromellitic dianhydride (PDA) acceptor to generate stress tunable dipoles and surface charges. As electron–hole pairs generated throughout the bulk ferrielectric are available at the pore surfaces of the COF, they are readily accessible to the water molecules to be split. The work provides a design concept based on donor–acceptor based frameworks showing conformational flexibility-driven symmetry breaking for piezocatalysis.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"68 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202502787","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Piezocatalysis has emerged as a promising technique for the production of green H2 fuel by harvesting mechanical energy. A metal-free, highly porous covalent–organic framework (COF) as a piezocatalyst that produces H2 at an ultra-high rate of 6.6 mmol g−1 h−1 under ultrasonication is reported. This activity originates from the electron–hole carriers generated in “nested” nearly degenerate conduction and valence bands driving ferrielectric ordering of dipoles whose coupling with soft torsional phonons facilitates absorption of energy from the mechanical stress fields. Conformationally flexible donor tris(4-aminophenyl)amine (TAPA) moiety in COF introduces soft torsional lattice modes that interact with pyromellitic dianhydride (PDA) acceptor to generate stress tunable dipoles and surface charges. As electron–hole pairs generated throughout the bulk ferrielectric are available at the pore surfaces of the COF, they are readily accessible to the water molecules to be split. The work provides a design concept based on donor–acceptor based frameworks showing conformational flexibility-driven symmetry breaking for piezocatalysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Industrial-Grade Flexible Carbon Fiber Paper/MXene Composite Electromagnetic Shielding Material with Ultra-Large Area and Ultra-High Performance Evidence of Long-Range Dzyaloshinskii–Moriya Interaction at Ferrimagnetic Insulator/Nonmagnetic Metal Interfaces Ferrielectric Dipolar Ordering in a Donor–Acceptor Based Covalent–Organic Framework for Piezocatalytic Water Splitting Separators for Rechargeable Metal Batteries: Design Principles and Evaluation Enhancing Optoelectronic Properties in Phthalocyanine-Based SURMOFs: Synthesis of ABAB Linkers by Avoiding Statistical Condensation with Tailored Building Blocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1