{"title":"Ductile damage analysis under extreme low-cycle biaxial shear loadings: Experiments and simulations","authors":"Zhichao Wei , Marleen Harting , Steffen Gerke , Michael Brünig","doi":"10.1016/j.ijsolstr.2025.113292","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the experimental and numerical analysis of ductile damage under extremely low-cycle loading conditions with a large strain range. Shear cyclic loading stress states with stress triaxiality of approximately zero are generated using the biaxially loaded cruciform X0-specimen, with equal positive and negative forces applied to different loading axes. Monotonic and various symmetric cyclic loading patterns are designed to investigate the influence of loading histories on the material response at both macro- and micro-levels. The numerical calculations are performed using a novel anisotropic continuum damage model. For plasticity, the hydrostatic sensitivity Drucker–Prager yield condition with combined hardening is used to characterize the isotropic plastic behavior. Additionally, an anisotropic damage strain tensor that considers stress state influences is used to predict the occurrence and development of damage. Digital image correlation (DIC) technique and scanning electron microscopy (SEM) technique enable comparison of experimental and numerical results in different aspects. The numerical results for load–displacement curves, total strain field, and damage strains agree well with the experimental data, as confirmed by quantitative error analysis in load–displacement curves and statistical analysis of SEM images.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"313 ","pages":"Article 113292"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768325000782","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the experimental and numerical analysis of ductile damage under extremely low-cycle loading conditions with a large strain range. Shear cyclic loading stress states with stress triaxiality of approximately zero are generated using the biaxially loaded cruciform X0-specimen, with equal positive and negative forces applied to different loading axes. Monotonic and various symmetric cyclic loading patterns are designed to investigate the influence of loading histories on the material response at both macro- and micro-levels. The numerical calculations are performed using a novel anisotropic continuum damage model. For plasticity, the hydrostatic sensitivity Drucker–Prager yield condition with combined hardening is used to characterize the isotropic plastic behavior. Additionally, an anisotropic damage strain tensor that considers stress state influences is used to predict the occurrence and development of damage. Digital image correlation (DIC) technique and scanning electron microscopy (SEM) technique enable comparison of experimental and numerical results in different aspects. The numerical results for load–displacement curves, total strain field, and damage strains agree well with the experimental data, as confirmed by quantitative error analysis in load–displacement curves and statistical analysis of SEM images.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.