Junhui Tian , Dingyi Bai , Sifen He, Zongfang Li, Lianyang Bai, Lang Pan
{"title":"Overexpression of cytochrome P450 CYP71AF43 contributing resistance to fenoxaprop-P-ethyl in Alopecurus myosuroides from China","authors":"Junhui Tian , Dingyi Bai , Sifen He, Zongfang Li, Lianyang Bai, Lang Pan","doi":"10.1016/j.pestbp.2025.106355","DOIUrl":null,"url":null,"abstract":"<div><div>Black-grass (<em>Alopecurus myosuroides</em>), one of the most economically destructive herbicide-resistant weeds in Europe, is rapidly expanding in winter wheat regions of China. In recent years, the recommended application rate of fenoxaprop-P-ethyl in the field has failed to effectively control <em>Alopecurus myosuroides</em> populations, thereby threatening wheat yields at risk. In this study, we collected a suspected herbicide-resistant population (R-HB) of <em>Alopecurus myosuroides</em> from a wheat field in Hebei Province and confirmed its resistance to fenoxaprop-P-ethyl, with a resistance index of 26.73-fold. Sensitivity analyses of other ACCase-inhibiting herbicides revealed cross-resistance in the R-HB population to clethodim and pinoxaden. Molecular analysis indicated that the resistance phenotype in this population was not due to alterations in the target site. Pretreatment with the cytochrome P450 (P450) inhibitor malathion partially reversed fenoxaprop-P-ethyl resistance in the R-HB population. RNA-seq and RT-qPCR validation revealed the constitutive overexpression of the P450 gene <em>CYP71AF43</em> in the R-HB population. Molecular docking predictions suggest that the CYP71AF43 protein may have metabolic activity toward fenoxaprop-P-ethyl. In genetically modified yeast, overexpression of <em>AmCYP71AF43</em> was found to enhance tolerance to fenoxaprop-P-ethyl, but not to clethodim and pinoxaden. Additionally, rice calli overexpressing the <em>AmCYP71AF43</em> gene exhibited resistance to fenoxaprop-P-ethyl, but not to clethodim or pinoxaden. Collectively, the increased expression of <em>CYP71AF43</em> may enhance P450-mediated metabolism, conferring resistance to fenoxaprop-P-ethyl in the R-HB population. This is the first report of this mechanism in <em>Alopecurus myosuroides</em>. This discovery provides a novel perspective for the in-depth analysis of resistance mechanisms in weeds against the ACCase-inhibiting herbicide fenoxaprop-P-ethyl.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"209 ","pages":"Article 106355"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357525000689","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Black-grass (Alopecurus myosuroides), one of the most economically destructive herbicide-resistant weeds in Europe, is rapidly expanding in winter wheat regions of China. In recent years, the recommended application rate of fenoxaprop-P-ethyl in the field has failed to effectively control Alopecurus myosuroides populations, thereby threatening wheat yields at risk. In this study, we collected a suspected herbicide-resistant population (R-HB) of Alopecurus myosuroides from a wheat field in Hebei Province and confirmed its resistance to fenoxaprop-P-ethyl, with a resistance index of 26.73-fold. Sensitivity analyses of other ACCase-inhibiting herbicides revealed cross-resistance in the R-HB population to clethodim and pinoxaden. Molecular analysis indicated that the resistance phenotype in this population was not due to alterations in the target site. Pretreatment with the cytochrome P450 (P450) inhibitor malathion partially reversed fenoxaprop-P-ethyl resistance in the R-HB population. RNA-seq and RT-qPCR validation revealed the constitutive overexpression of the P450 gene CYP71AF43 in the R-HB population. Molecular docking predictions suggest that the CYP71AF43 protein may have metabolic activity toward fenoxaprop-P-ethyl. In genetically modified yeast, overexpression of AmCYP71AF43 was found to enhance tolerance to fenoxaprop-P-ethyl, but not to clethodim and pinoxaden. Additionally, rice calli overexpressing the AmCYP71AF43 gene exhibited resistance to fenoxaprop-P-ethyl, but not to clethodim or pinoxaden. Collectively, the increased expression of CYP71AF43 may enhance P450-mediated metabolism, conferring resistance to fenoxaprop-P-ethyl in the R-HB population. This is the first report of this mechanism in Alopecurus myosuroides. This discovery provides a novel perspective for the in-depth analysis of resistance mechanisms in weeds against the ACCase-inhibiting herbicide fenoxaprop-P-ethyl.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.