Thermogalvanic bricks: optimising large dimension thermocells for air and water valorisation†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2024-12-10 DOI:10.1039/D4SE01498G
Rebecca Haughton-James, Sireenya Mesawang, Mark A. Buckingham, Robert Taylor, Patrick E. Phelan and Leigh Aldous
{"title":"Thermogalvanic bricks: optimising large dimension thermocells for air and water valorisation†","authors":"Rebecca Haughton-James, Sireenya Mesawang, Mark A. Buckingham, Robert Taylor, Patrick E. Phelan and Leigh Aldous","doi":"10.1039/D4SE01498G","DOIUrl":null,"url":null,"abstract":"<p >Thermogalvanic cells can potentially valorise the huge quantity of energy available as waste heat; using entropy-driven thermoelectrochemistry they can convert a thermal gradient into electricity. Most investigations exploit a thermal source (<em>e.g.</em> hot water, the human body, sunlight, electronics) <em>via</em> a heat exchanger (metal pipe, skin, housing, <em>etc</em>), combined with an unlimited heat sink (<em>e.g.</em> pumped cold water). Limited studies have used ambient air as the heat sink. This study is believed to be the first to explore using air as both the thermal source and heat sink. It compares thermogalvanic cell performance when using water–water and air–air as the thermal energy sources and sinks, respectively, for devices with relatively large physical dimensions (25 to 100 mm wide). Gelation improved power output under both scenarios, due to enhanced thermal isolation of the electrodes; power decreased with increasing width in the water–water setup, but power increased with increasing width for air–air harvesting. Water–water yielded higher power overall, yet the air–air system operated passively and could be further optimised for real-world applications, <em>i.e.</em> as thermogalvanic bricks or panels in building materials.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 5","pages":" 1165-1172"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d4se01498g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01498g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thermogalvanic cells can potentially valorise the huge quantity of energy available as waste heat; using entropy-driven thermoelectrochemistry they can convert a thermal gradient into electricity. Most investigations exploit a thermal source (e.g. hot water, the human body, sunlight, electronics) via a heat exchanger (metal pipe, skin, housing, etc), combined with an unlimited heat sink (e.g. pumped cold water). Limited studies have used ambient air as the heat sink. This study is believed to be the first to explore using air as both the thermal source and heat sink. It compares thermogalvanic cell performance when using water–water and air–air as the thermal energy sources and sinks, respectively, for devices with relatively large physical dimensions (25 to 100 mm wide). Gelation improved power output under both scenarios, due to enhanced thermal isolation of the electrodes; power decreased with increasing width in the water–water setup, but power increased with increasing width for air–air harvesting. Water–water yielded higher power overall, yet the air–air system operated passively and could be further optimised for real-world applications, i.e. as thermogalvanic bricks or panels in building materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
Back cover Correction: Photocatalytic CO2 reduction to methanol integrated with the oxidative coupling of thiols for S–X (X = S, C) bond formation over an Fe3O4/BiVO4 composite Back cover Triggering the phase transition of molybdenum di-selenide (MoSe2) 1T@2H by introducing copper (Cu+): experimental insights and DFT analysis for the hydrogen evolution reaction† The value of enhanced geothermal systems for the energy transition in California
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1