N. Bondarenko, Y. Podladchikov, S. Williams-Stroud, R. Makhnenko
{"title":"Stratigraphy-Induced Localization of Microseismicity During CO2 Injection in Illinois Basin","authors":"N. Bondarenko, Y. Podladchikov, S. Williams-Stroud, R. Makhnenko","doi":"10.1029/2024JB029526","DOIUrl":null,"url":null,"abstract":"<p>Subsurface fluid injection stimulates complex hydromechanical interaction, necessitating the integration of geomechanical data across spatial and temporal scales to consider the sophisticated behavior. Induced seismic response is usually associated with the complex reservoir architecture and pre-existing features that are three-dimensional, such as local stratigraphy, fractures, faults, and other discontinuities. This study encompasses laboratory characterization of the coupled hydromechanical response of cores extracted from rock formations in Illinois Basin: reservoir - Mt. Simon sandstone, basal seal - Argenta sandstone, and crystalline basement - Precambrian rhyolite. High-resolution numerical modeling allows considering the three-dimensional complexity of the Illinois Basin Decatur Project with spatial resolution comparable to one of the active seismic surveys. A detailed reconstruction of the evolving state of stress in formations lacking direct stress measurements is achieved by numerical modeling that integrated laboratory-derived hydromechanical properties, a porosity-permeability relationship, active seismic data, and an inverted three-dimensional porosity distribution. It appears that the microseismic clusters, mainly observed in the crystalline basement during the injection, are linked to zones experiencing more critically stressed conditions prior to injection. These zones have a potential for reactivation during the injection and are attributed to the specific local stratigraphy of the injection site, as well as transfer of triggering perturbations during the injection.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029526","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029526","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Subsurface fluid injection stimulates complex hydromechanical interaction, necessitating the integration of geomechanical data across spatial and temporal scales to consider the sophisticated behavior. Induced seismic response is usually associated with the complex reservoir architecture and pre-existing features that are three-dimensional, such as local stratigraphy, fractures, faults, and other discontinuities. This study encompasses laboratory characterization of the coupled hydromechanical response of cores extracted from rock formations in Illinois Basin: reservoir - Mt. Simon sandstone, basal seal - Argenta sandstone, and crystalline basement - Precambrian rhyolite. High-resolution numerical modeling allows considering the three-dimensional complexity of the Illinois Basin Decatur Project with spatial resolution comparable to one of the active seismic surveys. A detailed reconstruction of the evolving state of stress in formations lacking direct stress measurements is achieved by numerical modeling that integrated laboratory-derived hydromechanical properties, a porosity-permeability relationship, active seismic data, and an inverted three-dimensional porosity distribution. It appears that the microseismic clusters, mainly observed in the crystalline basement during the injection, are linked to zones experiencing more critically stressed conditions prior to injection. These zones have a potential for reactivation during the injection and are attributed to the specific local stratigraphy of the injection site, as well as transfer of triggering perturbations during the injection.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.