Claire Da Costa, Thierry Berthe, Titouan Dehaies, Sophie Ayrault, Yannick Colin
{"title":"The Bacterial Antimonite Oxidase AnoA: Unexpected Diversity and Environmental Widespread Occurrence","authors":"Claire Da Costa, Thierry Berthe, Titouan Dehaies, Sophie Ayrault, Yannick Colin","doi":"10.1111/1462-2920.70069","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The growing contamination of urban areas by antimony (Sb) has sparked interest in microbial processes that modulate Sb speciation in ecosystems. The bacterial antimonite oxidase AnoA is the only oxidase known so far whose gene expression is specifically induced by Sb(III), but its annotation in public databases is currently lacking. Here, the computational search for AnoA orthologs predicted an unexpected phylogenetic distribution across the <i>Pseudomonadota</i> and <i>Actinomycetota</i>. Putative orthologs were identified in both known Sb(III)-oxidisers (e.g., <i>Shinella</i>, <i>Hydrogenophaga</i>, <i>Bosea</i>, <i>Cupriavidus</i> and <i>Pseudomonas</i>) and taxa not previously linked to the Sb cycle (e.g., <i>Bradyrhizobium</i>, <i>Mesorhizobium</i>, <i>Methylobacterium</i> and <i>Paraburkholderia</i>). The <i>anoA</i> gene is single-copy in most Proteobacterial genomes, but is often detected in multiple copies in the <i>Actinomycetota</i>. Furthermore, sequence evolutionary distances suggest that it is mainly inherited vertically, with horizontal transfer events, in particular towards the <i>Gammaproteobacteria</i>. Using the constructed database, new PCR primers were designed and outperformed existing strain-specific primers in amplifying the <i>anoA</i> gene from samples with varying Sb levels and microbial profiles. Sequencing and quantification of PCR amplicons revealed a diverse range of sequences in sediments and natural biofilms, indicating that the oxidase is more environmentally diverse and widespread than previously thought and may play a significant role in Sb(III) detoxification.</p>\n </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70069","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The growing contamination of urban areas by antimony (Sb) has sparked interest in microbial processes that modulate Sb speciation in ecosystems. The bacterial antimonite oxidase AnoA is the only oxidase known so far whose gene expression is specifically induced by Sb(III), but its annotation in public databases is currently lacking. Here, the computational search for AnoA orthologs predicted an unexpected phylogenetic distribution across the Pseudomonadota and Actinomycetota. Putative orthologs were identified in both known Sb(III)-oxidisers (e.g., Shinella, Hydrogenophaga, Bosea, Cupriavidus and Pseudomonas) and taxa not previously linked to the Sb cycle (e.g., Bradyrhizobium, Mesorhizobium, Methylobacterium and Paraburkholderia). The anoA gene is single-copy in most Proteobacterial genomes, but is often detected in multiple copies in the Actinomycetota. Furthermore, sequence evolutionary distances suggest that it is mainly inherited vertically, with horizontal transfer events, in particular towards the Gammaproteobacteria. Using the constructed database, new PCR primers were designed and outperformed existing strain-specific primers in amplifying the anoA gene from samples with varying Sb levels and microbial profiles. Sequencing and quantification of PCR amplicons revealed a diverse range of sequences in sediments and natural biofilms, indicating that the oxidase is more environmentally diverse and widespread than previously thought and may play a significant role in Sb(III) detoxification.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens